Answer:
(a) water height =408.66 in.
(b) mercury height=30.04 in.
Explanation:
Given: P=14.769 psi ( 1 psi= 6894.76
)
we know that 
where 
h=height.
Given that P=14.769 psi ⇒P= 101828.6 7
(a)

⇒101828.67=
=10.38 m
So water barometer will read 408.66 in. (1 m=39.37 in)
(b) 
=13600
So 101828.67=
=0.763 m
So mercury barometer will read 30.04 in.
Answer:
m' = 4948.38 kg/s
Explanation:
For a case of 100% efficiency, the power produced must be equal to the rate of potential energy conversion
GIVEN THAT
Power = 100 MW
rate of Potential energy = (m')*g*h
100*10^6 = (m')*9.81*206
m' = 4948.38 kg/s
Answer:
a) 24 kg
b) 32 kg
Explanation:
The gauge pressure is of the gas is equal to the weight of the piston divided by its area:
p = P / A
p = m * g / (π/4 * d^2)
Rearranging
p * (π/4 * d^2) = m * g
m = p * (π/4 * d^2) / g
m = 1200 * (π/4 * 0.5^2) / 9.81 = 24 kg
After the weight is added the gauge pressure is 2.8kPa
The mass of piston plus addded weight is
m2 = 2800 * (π/4 * 0.5^2) / 9.81 = 56 kg
56 - 24 = 32 kg
The mass of the added weight is 32 kg.
Answer:
The initial temperature is 649 K (376 °C).
The final pressure is 0.965 MPa
Explanation:
From the ideal gas equation
PV = nRT
P is the initial pressure of water = 2 MPa = 2×10^6 Pa
V is intial volume = 150 L = 150/1000 = 0.15 m^3
n is the number of moles of water in the container = mass/MW = 1000 g/18 g/mol = 55.6 mol
R is gas constant = 8.314 m^3.Pa/mol.K
T (initial temperature) = PV/nR = (2×10^6 × 0.15)/(55.6 × 8.314) = 649 K = 649 - 273 = 376 °C
From pressure law,
P1/T1 = P2/T2
P2 (final pressure) = P1T2/T1
T2 (final temperature) = 40 °C = 40 + 273 = 313 K
P1 (initial pressure) = 2 MPa
T1 (initial temperature) = 649 K
P2 = 2 × 313/649 = 0.965 MPa