The average speed of the ant is 0.276 cm/s and the average velocity is 0.136 cm/s.
The correct answer is option D.
In the given graph, we can deduce the following;
- the total time of the motion, = 1 mins + 45 s = 60 s + 45 s = 105 s
The average speed of the ant is calculated as;

The total distance from the graph is calculated as follows;
- first horizontal distance from 2 cm to 8 cm = 8 - 2 = 6 cm
- first upward distance from 3 cm to 5 cm = 5 - 3 = 2 cm
- second horizontal distance from 8 cm to 6 cm = 8 - 6 = 2 cm
- second upward distance from 5 cm to 12 cm = 12 - 5 = 7 cm
- third horizontal distance from 6 cm to 13 cm = 13 - 6 = 7 cm
- fourth downward distance from 12 cm to 9 cm = 3 cm
- final horizontal distance from 13 cm to 15 cm = 2cm
The total distance = (6 + 2 + 2 + 7 + 7 + 3 + 2) cm = 29 cm

The average velocity is calculated as the change in displacement per change in time.
The displacement is the shortest distance between the start and end positions.
- This shortest distance is the straight line connecting the start and end position. Call this line P
- From the end position at x = 15 cm, draw a vertical line from y = 9 cm, to y = 3 cm. The displacement = 9 cm - 3 cm = 6 cm
- Also, draw a horizontal line from start at x = 2 cm to x = 15 cm. The displacement = 15 cm - 2 cm = 13 cm
Notice, you have a right triangle, now calculate the length of line P.
↓end
↓
↓ 6cm
↓
start -------------13 cm------------
Use Pythagoras theorem to solve for P.

The average velocity of the ant is calculated as;

Thus, the average speed of the ant is 0.276 cm/s and the average velocity is 0.136 cm/s.
Learn more here: brainly.com/question/589950
(C) the government agency that regulates these types of chemicals
Answer:
The work done to get you safely away from the test is 2.47 X 10⁴ J.
Explanation:
Given;
length of the rope, L = 70 ft
mass per unit length of the rope, μ = 2 lb/ft
your mass, W = 120 lbs
mass of the 70 ft rope = 2 lb/ft x 70 ft
= 140 lbs.
Total mass to be pulled to the helicopter, M = 120 lbs + 140 lbs
= 260 lbs
The work done is calculated from work-energy theorem as follows;
W = Mgh
where;
g is acceleration due gravity = 32.17 ft/s²
h is height the total mass is raised = length of the rope = 70 ft
W = 260 Lb x 32.17 ft/s² x 70 ft
W = 585494 lb.ft²/s²
1 lb.ft²/s² = 0.0421 J
W = 585494 lb.ft²/s² = 2.47 X 10⁴ J.
Therefore, the work done to get you safely away from the test is 2.47 X 10⁴ J.
72 m/s
Explanation:
Given,
Frequency ( f ) = 6 Hz
Wavelength ( λ ) = 12 m
To find : -
Speed ( v ) = ?
Formula : -
v = f x λ
v
= 6 x 12
= 72 m/s
Therefore,
the speed of a wave with a frequency of 6 Hz and a wavelength of 12 m is 72 m/s.
Answer:
it’s an example of a generator.
Explanation: