Apply the law of conservation of momentum for this situation. The law states that the momentum of a system is constant (in absence of external forces acting on it).
The 'system' in this case are the two skaters. There is no external force on the skaters. Suppose the skaters are initially standing still. The momentum in the system is 0. This value will need to remain constant, even after the mutual push (which is a set of forces from <em>inside</em> the system). So we know that
(total momentum before) = (total momentum after)
Indexing the masses and velocities by the first letter of the skaters' names:

From the last row, you can see that the skaters will have momentum of same magnitude but opposite direction, after the push off. That answers the first question: neither will have a greater momentum (both will have one of same magnitude).
Since Ricardo is heavier, from the above equality it follows that

In words, Paula has the greater speed, after the push-off.
The work done on the backpack by the student applies 80 N of force to lift the backpack 1.5 m is 120J.
<h3>How to calculate work done?</h3>
Work done is a measure of energy expended in moving an object; most commonly, force times distance.
It is said that no work is done if the object does not move, hence, the work done on an object can be calculated as follows:
Work done = Force × Distance
According to this question, a student carries a very heavy backpack and to lift the backpack off the ground, the student must apply 80 N of force to lift the backpack 1.5 m.
Work done = 80N × 1.5m
Work done = 120J
Therefore, the work done on the backpack by the student applies 80 N of force to lift the backpack 1.5 m is 120J.
Learn more about work done at: brainly.com/question/28172139
#SPJ1
The paint makes the wall look yellow because of the pigment in it.
Well,
First of all, this isn't physics in my opinion; this is Astronomy.
In the mesosphere, there exists a high concentration of ions. This region is called the ionosphere.