1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bezzdna [24]
2 years ago
13

A student is running at her top speed of 5.4 m/s to catch a bus, which is stopped at the bus stop. When the student is still a d

istance 38.5 m from the bus, it starts to pull away, moving with a constant acceleration of 0.171 m/s2.
a) For how much time and what distance does the student have to run at 5.4m/s before she overtakes the bus?
b) When she reaches the bus how fast is the bus traveling
c) Sketch an x-t graph for both the student and the bus. Take x=0 at the initial position of the student
d) the equations you used in part a to find the time have a second solution, corresponding to a later time for which the student and bus are again at the same place if they continue thier specified motion. Explain the significance of this second solution. How fast is the bus traveling at this point
e) If the students top speed is 3.5 m/s will she catch the bus?
f) is the minumun speed the student must have to just catch up with the bus? For what time and distance must she run in that case

Physics
1 answer:
olya-2409 [2.1K]2 years ago
4 0

Answer:

a) t=8.19s; x=44.2m

b) v=1.401 m/s

c) see attachment

d) The second solution is a later time at which the bus catches the student. v=9.40 m/s

e) No, she won't.

f) v=3.63m/s;t=21.2; x=77m

Explanation:

a) The motion of both the bus and the student can be explained by the equation x= v_{0} +\frac{1}{2}at^{2}. Since the student is not accelerating, but rather maintaining a constant speed; the particular equation that describes the motion of the student is: x_{student} = 5.4 \frac{m}{s} * t. Meanwhile, since the bus starts its motion at an initial velocity of zero, the equation that describes its motion is: x_{bus} =\frac{1}{2} * 0.171 \frac{m}{s^{2} } * t^{2}. The motion of the student relative to that of the bus can be described by the equation: x_{s} =x_{bus} +38.5m. By replacing terms in the last equation we end up with the following quadratic equation: (0.0855 \frac{m}{s^{2} } * t^{2} )-(5.4\frac{m}{s} *t)+38.5m =0. Solving the quadratic equation will yield two solutions; t1=8.19s and t2=55.0s. By plugging in t1 onto the equation that describes the motion of the student we will find the distance runned by her, x=44.2m.

b) The velocity of the bus can be modeled by the equation v^{2} = v_{0} ^{2} +2ax. Since the initial velocity of the bus is zero, the first term of the equation cancels. Next, we solve for v and plug in the acceleration of 0.171 m/s2 and the distance 5.74m (traveled by the bus, note: this is equal to the 44.2m travelled by the student minus the 38.5m that separated the student from the bus at the beginning of the problem).

c) The equations that make up the x-t graph are: x = 5.4 \frac{m}{s} * t and  x =\frac{1}{2} * 0.171 \frac{m}{s^{2} } * t^{2} + 38.5; as described in part a.

d) The first solution states that the student would have to run 44.2 m in 8.19 s in order to catch the bus. But, at that point, the student has a greater speed than that of the bus. So if both were to keep he same specified motion, the student would run past the bus until it reaches a velocity greater than that of the student. At which point, the bus will start to narrow the distance with the student until it finally catches up with the student 55 seconds after both started their respective motion.

e) No, because the quadratic equation (0.0855 \frac{m}{s^{2} } * t^{2} )-(3.5\frac{m}{s} *t)+38.5m =0 has no solution. This means that the two curves that describe the distance vs time graph for both student and bus do not intersect.

f) This answer is reached by finding b of the quadratic equation. The minimum that b can be in order to find a real answer to the quadratic equation is found by solving b^{2} -4ac=0. If we take a = 0.0855 and c = 38.5, then we find that the minimum speed that the student has to run at is 3.63 m/s. If we then solve the quadratic equation (0.0855 \frac{m}{s^{2} } * t^{2} )-(3.63\frac{m}{s} *t)+38.5m =0,we will find that the time the student will run is 21.2 seconds. By pluging in that time in the equation that describes her motion: x_{student} = 3.63 \frac{m}{s} * t we find that she has to run 77 meters in order to catch the bus.

You might be interested in
Give an example of a normal force. type below.
Oksi-84 [34.3K]

Normal force is the force exerted when an object is on an surface. So an example could be a pile of books on top of a table.

8 0
3 years ago
Just before the ball leaves her hand, what is its centripetal acceleration?
erica [24]
A = \frac{ v^{2} }{r} = ω²r
5 0
2 years ago
The amplitude of a paricular wave is 4.0 m. The crest to trough distance
kozerog [31]

Answer:

The crest to trough distance = 8 m

Explanation:

Given that,

The amplitude of a particular wave is 4.0 m.

We need to find the crest to trough distance.

We know that,

Amplitude = The distance from the base line to the crest or the the distance from the baseline to the trough.

It means,

Distance from crest to trough = 2(Amplitude)

= 2(4)

= 8 m

Hence, the crest to trough distance is equal to 8 m.

6 0
2 years ago
Calculate the speed of an 8.0x10^4 kg airliner with a kinetic energy of 1.1x10^9 j ...?
Over [174]
Kinetic energy is the energy possessed by an object on motion. it is expressed as follows:

KE = 0.5mv^2

where m is the mass and v is the velocity of the object. We calculate as follows:


KE = 0.5mv^2
1.1x10^9 J = 0.5(8.0x10^4 kg) v^2
v = 165.83 m/s
6 0
3 years ago
A 0.5-kg ball moving at 5 m/s strikes a wall and rebounds in the opposite direction with a speed of 2 m/s. If the impulse occurs
mart [117]

<em>Given that:</em>

                       mass of the ball (m) = 0.5 Kg ,

                    ball strikes the wall (v₁) = 5 m/s ,

rebounds in opposite direction (v₂) = 2 m/s,

                                time duration (t) = 0.01 s,

        <em> Determine the force (F) = ?</em>

We know that from Newton's II law,

                                <em>F = m. a</em>  Newtons  

                                  (velocity acting in opposite direction, so <em>a = ( (v₁ + v₂)/t</em>

                                   = m × (v₁ + v₂)/t

                                   = 0.5 × (5 + 2)/0.01

                                  = 350 N

<em>The force acting up on the ball is 350 N</em>

                                     

6 0
3 years ago
Other questions:
  • The density of blood is 1.05 kg/m3, find the mass of a bag of blood for a transfusion, if the volume is 1.5 m3.
    13·2 answers
  • A ball with a weight of 0.5 N is submerged under water and then released. There is a net force of 5 N upwards. what is the buoya
    11·1 answer
  • As the spaceship travels upward in the sky, some of its kinetic energy will be lost to the universe due to ?
    7·1 answer
  • If the kinetic and potential energy in a system are equal, then the potential energy increases. What happens as a resul
    7·1 answer
  • Steam at 400C has a specific volume of 0.02m3/kg. Determine the pressure of the steam based on a) the ideal gas equation b) the
    14·1 answer
  • (A) Electricity and Magnetism
    12·1 answer
  • A car starts at the top of a hill with 200 J of energy, and rolls down a frictionless surface. The isolated system consists of t
    8·1 answer
  • Where do most comets in our solar system come from?
    8·2 answers
  • Kinetic energy is the energy an object has due to its
    9·2 answers
  • g 2. In a laboratory experiment on standing waves a string 3.0 ft long is attached to the prong of an electrically driven tuning
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!