1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bezzdna [24]
3 years ago
13

A student is running at her top speed of 5.4 m/s to catch a bus, which is stopped at the bus stop. When the student is still a d

istance 38.5 m from the bus, it starts to pull away, moving with a constant acceleration of 0.171 m/s2.
a) For how much time and what distance does the student have to run at 5.4m/s before she overtakes the bus?
b) When she reaches the bus how fast is the bus traveling
c) Sketch an x-t graph for both the student and the bus. Take x=0 at the initial position of the student
d) the equations you used in part a to find the time have a second solution, corresponding to a later time for which the student and bus are again at the same place if they continue thier specified motion. Explain the significance of this second solution. How fast is the bus traveling at this point
e) If the students top speed is 3.5 m/s will she catch the bus?
f) is the minumun speed the student must have to just catch up with the bus? For what time and distance must she run in that case

Physics
1 answer:
olya-2409 [2.1K]3 years ago
4 0

Answer:

a) t=8.19s; x=44.2m

b) v=1.401 m/s

c) see attachment

d) The second solution is a later time at which the bus catches the student. v=9.40 m/s

e) No, she won't.

f) v=3.63m/s;t=21.2; x=77m

Explanation:

a) The motion of both the bus and the student can be explained by the equation x= v_{0} +\frac{1}{2}at^{2}. Since the student is not accelerating, but rather maintaining a constant speed; the particular equation that describes the motion of the student is: x_{student} = 5.4 \frac{m}{s} * t. Meanwhile, since the bus starts its motion at an initial velocity of zero, the equation that describes its motion is: x_{bus} =\frac{1}{2} * 0.171 \frac{m}{s^{2} } * t^{2}. The motion of the student relative to that of the bus can be described by the equation: x_{s} =x_{bus} +38.5m. By replacing terms in the last equation we end up with the following quadratic equation: (0.0855 \frac{m}{s^{2} } * t^{2} )-(5.4\frac{m}{s} *t)+38.5m =0. Solving the quadratic equation will yield two solutions; t1=8.19s and t2=55.0s. By plugging in t1 onto the equation that describes the motion of the student we will find the distance runned by her, x=44.2m.

b) The velocity of the bus can be modeled by the equation v^{2} = v_{0} ^{2} +2ax. Since the initial velocity of the bus is zero, the first term of the equation cancels. Next, we solve for v and plug in the acceleration of 0.171 m/s2 and the distance 5.74m (traveled by the bus, note: this is equal to the 44.2m travelled by the student minus the 38.5m that separated the student from the bus at the beginning of the problem).

c) The equations that make up the x-t graph are: x = 5.4 \frac{m}{s} * t and  x =\frac{1}{2} * 0.171 \frac{m}{s^{2} } * t^{2} + 38.5; as described in part a.

d) The first solution states that the student would have to run 44.2 m in 8.19 s in order to catch the bus. But, at that point, the student has a greater speed than that of the bus. So if both were to keep he same specified motion, the student would run past the bus until it reaches a velocity greater than that of the student. At which point, the bus will start to narrow the distance with the student until it finally catches up with the student 55 seconds after both started their respective motion.

e) No, because the quadratic equation (0.0855 \frac{m}{s^{2} } * t^{2} )-(3.5\frac{m}{s} *t)+38.5m =0 has no solution. This means that the two curves that describe the distance vs time graph for both student and bus do not intersect.

f) This answer is reached by finding b of the quadratic equation. The minimum that b can be in order to find a real answer to the quadratic equation is found by solving b^{2} -4ac=0. If we take a = 0.0855 and c = 38.5, then we find that the minimum speed that the student has to run at is 3.63 m/s. If we then solve the quadratic equation (0.0855 \frac{m}{s^{2} } * t^{2} )-(3.63\frac{m}{s} *t)+38.5m =0,we will find that the time the student will run is 21.2 seconds. By pluging in that time in the equation that describes her motion: x_{student} = 3.63 \frac{m}{s} * t we find that she has to run 77 meters in order to catch the bus.

You might be interested in
Help quick (edge 2021)
kow [346]

Answer:

a

Explanation:

8 0
3 years ago
Which of the following is the correct name for CCl4
Ira Lisetskai [31]

Answer: Carbon tetrachloride Or Tetrachloromethane

Explanation: Carbon tetrachloride is an important nonpolar covalent compound. You determine its name based on the atoms present in the compound.

7 0
3 years ago
Read 2 more answers
Two friends are carrying a crate of mass 200 kg up a flight of stairs. The crate has length 1.25 m and height 0.500 m, and its c
Marysya12 [62]

Ans; see attached file for calculation and answer

Explanation:

4 0
3 years ago
Beginning at the NW corner of the intersection of Pine & 675, thence north 950 feet, thence west 380 feet, thence south 950
Serjik [45]

Answer:

this description is valid for mediadle displacement, bone is an acceptable description

Explanation:

The description of a person's position must be done with a position vector. These vectors must have magnitude, a given direction and a starting point.

In the description this has a starting point corner NO of pine and 675.

Each displacement occurs with respect to the previous one, indicating the magnitude of the displacement and its direction.

After analyzing  this description is valid for mediadle displacement, bone is an acceptable description

6 0
3 years ago
An object attached to one end of a spring makes 20 vibrations in 10 seconds. Its angular frequency is: 0. 79 rad/s 1. 57 rad/s 2
morpeh [17]

Angular frequency in radian per second for 20 vibrations in 10 seconds is 12.6 rad/s

<h3>What is Angular frequency?</h3>

Angular frequency is the number of vibrations in radian per second.

The total number of vibrations n is 20 and the time taken for these vibrations is 10 s

The frequency of the vibrations will be

f = 20 / 10 = 2 Hz

Angular frequency is related to the frequency as

ω = 2πf

ω=2π × 2

ω = 12.6 rad/s

Thus, the angular frequency is 12.6 rad/s.

Learn more about Angular frequency.

brainly.com/question/14244057

#SPJ

5 0
2 years ago
Other questions:
  • HELP A.S.A.P<br> SCIENCE
    7·2 answers
  • Please i need answer ASAP... Please guys
    6·1 answer
  • How does air resistance affect the velocity of a falling object?
    12·1 answer
  • Please check my answers: The voltage across a 10-ohm resistor carrying 3 amps must be? I got 30 volts-v=?, I=3 amps, R= 16 ohm.
    9·1 answer
  • A block slides down a frictionless plane having an inclination of 15.0°. The block starts from rest at the top, and the length o
    14·1 answer
  • An electric motor is used to operate a Carnot refrigerator with an interior temperature of 0.00 ◦C. Liquid water at 0.00 ◦C is p
    10·1 answer
  • A 48.0-turn circular coil of radius 5.50 cm can be oriented in any direction in a uniform magnetic field having a magnitude of 0
    10·2 answers
  • As a rocket ascends, its acceleration increases even though the net force on it stays constant. why? (assume a traveling distanc
    6·2 answers
  • उत्तोलक हुन् ?
    11·1 answer
  • Deonte’s family sees a solar panel display and considers using solar power for their home. Deonte knows that solar energy is a n
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!