1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bezzdna [24]
2 years ago
13

A student is running at her top speed of 5.4 m/s to catch a bus, which is stopped at the bus stop. When the student is still a d

istance 38.5 m from the bus, it starts to pull away, moving with a constant acceleration of 0.171 m/s2.
a) For how much time and what distance does the student have to run at 5.4m/s before she overtakes the bus?
b) When she reaches the bus how fast is the bus traveling
c) Sketch an x-t graph for both the student and the bus. Take x=0 at the initial position of the student
d) the equations you used in part a to find the time have a second solution, corresponding to a later time for which the student and bus are again at the same place if they continue thier specified motion. Explain the significance of this second solution. How fast is the bus traveling at this point
e) If the students top speed is 3.5 m/s will she catch the bus?
f) is the minumun speed the student must have to just catch up with the bus? For what time and distance must she run in that case

Physics
1 answer:
olya-2409 [2.1K]2 years ago
4 0

Answer:

a) t=8.19s; x=44.2m

b) v=1.401 m/s

c) see attachment

d) The second solution is a later time at which the bus catches the student. v=9.40 m/s

e) No, she won't.

f) v=3.63m/s;t=21.2; x=77m

Explanation:

a) The motion of both the bus and the student can be explained by the equation x= v_{0} +\frac{1}{2}at^{2}. Since the student is not accelerating, but rather maintaining a constant speed; the particular equation that describes the motion of the student is: x_{student} = 5.4 \frac{m}{s} * t. Meanwhile, since the bus starts its motion at an initial velocity of zero, the equation that describes its motion is: x_{bus} =\frac{1}{2} * 0.171 \frac{m}{s^{2} } * t^{2}. The motion of the student relative to that of the bus can be described by the equation: x_{s} =x_{bus} +38.5m. By replacing terms in the last equation we end up with the following quadratic equation: (0.0855 \frac{m}{s^{2} } * t^{2} )-(5.4\frac{m}{s} *t)+38.5m =0. Solving the quadratic equation will yield two solutions; t1=8.19s and t2=55.0s. By plugging in t1 onto the equation that describes the motion of the student we will find the distance runned by her, x=44.2m.

b) The velocity of the bus can be modeled by the equation v^{2} = v_{0} ^{2} +2ax. Since the initial velocity of the bus is zero, the first term of the equation cancels. Next, we solve for v and plug in the acceleration of 0.171 m/s2 and the distance 5.74m (traveled by the bus, note: this is equal to the 44.2m travelled by the student minus the 38.5m that separated the student from the bus at the beginning of the problem).

c) The equations that make up the x-t graph are: x = 5.4 \frac{m}{s} * t and  x =\frac{1}{2} * 0.171 \frac{m}{s^{2} } * t^{2} + 38.5; as described in part a.

d) The first solution states that the student would have to run 44.2 m in 8.19 s in order to catch the bus. But, at that point, the student has a greater speed than that of the bus. So if both were to keep he same specified motion, the student would run past the bus until it reaches a velocity greater than that of the student. At which point, the bus will start to narrow the distance with the student until it finally catches up with the student 55 seconds after both started their respective motion.

e) No, because the quadratic equation (0.0855 \frac{m}{s^{2} } * t^{2} )-(3.5\frac{m}{s} *t)+38.5m =0 has no solution. This means that the two curves that describe the distance vs time graph for both student and bus do not intersect.

f) This answer is reached by finding b of the quadratic equation. The minimum that b can be in order to find a real answer to the quadratic equation is found by solving b^{2} -4ac=0. If we take a = 0.0855 and c = 38.5, then we find that the minimum speed that the student has to run at is 3.63 m/s. If we then solve the quadratic equation (0.0855 \frac{m}{s^{2} } * t^{2} )-(3.63\frac{m}{s} *t)+38.5m =0,we will find that the time the student will run is 21.2 seconds. By pluging in that time in the equation that describes her motion: x_{student} = 3.63 \frac{m}{s} * t we find that she has to run 77 meters in order to catch the bus.

You might be interested in
A block of ice (m = 9 kg) at a temperature of T1 = 0 degrees C is placed out in the sun until it melts, and the temperature of t
jonny [76]

Answer:

a) An expression for the amount of energy, E_m, needed to melt the ice into water.

(E_m) = (m × Lf)

b) An expression for the total amount of energy, E_tot, to melt the ice and then bring the water to T2

(Total heat) = (m × Lf) + mc (T2 - T1)

c) 3,646,458 J = 3646.46 kJ

Explanation:

a) When a pure body changes its phase at meltimgbor boiling point, it does so at a constant temperature. When a pure body melts, the amount of heat responsible for this change is just given by a product od the mass of the body and the body's heat of fusion.

(E_m) = (m × Lf)

b) The Heat required to raise the temperature of a body from one temperature to another is given by the product of the mass of the body, its specific heat capacity and the temperature difference between the final point and the starting point.

(E_2) = mcΔT = mc (T2 - T1)

Total heat required to melt the ice at T1 = 0 and raise the temperature of the resulting water to T2 is then a sum of (E_m) + (E_2)

(Total heat) = (m × Lf) + mc (T2 - T1)

c) What is the energy in Joules?

(Total heat) = (m × Lf) + mc (T2 - T1)

m = mass of ice = resulting mass of water = 9 kg

Lf = latent heat of fusion = 334000 J/kg

c = Specific heat capacity of water = 4186 J/kg.K

T2 = final temperature of the water = 17°C

T1 = Initial temperature of the water = 0°C

Note that the units of temperature difference is the same for K and °C

(Total heat) = (m × Lf) + mc (T2 - T1)

Q = (9 × 334000) + [9 × 4186 × (17 - 0)]

Q = 3,006,000 + 640,458 = 3,646,458 J = 3646.46 kJ

Hope this Helps!!!

7 0
3 years ago
Do any of the galaxies appear to be closer to each other as your universe expands? What does this say about the possibility of g
Luda [366]

Explanation:

In local galactic group the force of expansion of universe is overcome by the force of attraction due  to gravity. Best example is our own galaxy milky way and another giant galaxy in our local group Andromeda. Andromeda having enormous gravity is pulling milky way towards itself, overcoming the force of expansion.

So, there  are possibilities of collision despite the expansion of universe at a rapid pace. It is estimated that the milky way and Andromeda will collide each other after about 50 billion years from now.  

8 0
2 years ago
What circumstance would allow an officer to search a home even if they didn’t have a warrant?
Ipatiy [6.2K]

Answer:

A

Explanation:

The officer would have had permission regardless of anything else, kind of like letting someone into your house.

5 0
2 years ago
A block with mass 0.5 kg is forced against a horizontal spring of negligible mass, compressing the spring a distance of 0.2 m. W
lianna [129]

Answer:

So coefficient of kinetic friction will be equal to 0.4081

Explanation:

We have given mass of the block m = 0.5 kg

The spring is compressed by length x = 0.2 m

Spring constant of the sprig k = 100 N/m

Blocks moves a horizontal distance of s = 1 m

Work done in stretching the spring is equal to W=\frac{1}{2}kx^2=\frac{1}{2}\times 100\times 0.2^2=2J

This energy will be equal to kinetic energy of the block

And this kinetic energy must be equal to work done by the frictional force

So \mu mg\times s=2

\mu\times  0.5\times 9.8\times 1=2

\mu =0.4081

So coefficient of kinetic friction will be equal to 0.4081

5 0
2 years ago
How much heat is lost by 2.0 grams of water if the temperature drops from 31 °C to 29 °C? The specific heat of water is 4.184 J/
Elanso [62]

Given :

Mass of water, m = 2 grams.

The temperature of water drops from 31 °C to 29 °C .

The specific heat of water is 4.184 J/(g • °C).

To Find :

Amount of heat lost in this process.

Solution :

We know, heat lost is given by :

Heat\ lost,H = ms( T_f - T_i)\\\\H = 2\times 4.184 \times ( 31 - 29 )\ J\\\\H = 16.736\ J

Therefore, amount of heat lost in this process is 16.736 J.

4 0
3 years ago
Other questions:
  • Match the term to the correct description.
    15·1 answer
  • A football field is about 91.44 meters long. If it takes a person 35 seconds to run its length, how fast were they running in me
    8·1 answer
  • How do the four rocky planets comapre to the four gas giants in size?
    14·2 answers
  • How many coulombs of positive charge (in units of 107 C) are there 1.53 kg of plutonium, given its atomic mass is 244 and that e
    6·1 answer
  • To understand the electric potential and electric field of a point charge in three dimensions Consider a positive point charge q
    6·1 answer
  • A baseball pitcher throws the ball in a motion where there is rotation of the forearm about the elbow joint as well as other mov
    8·2 answers
  • I’m tryna pass this class so pleaseee
    11·1 answer
  • Electromagnetic waves polarized in the x direction propagate towards an ideal polarizer whose axis is aligned with the y-axis. H
    6·1 answer
  • the capacity of computer of performing more than one task at the same time is called ............of computer.​
    11·1 answer
  • What is the number of 0 mean​
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!