1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bezzdna [24]
3 years ago
13

A student is running at her top speed of 5.4 m/s to catch a bus, which is stopped at the bus stop. When the student is still a d

istance 38.5 m from the bus, it starts to pull away, moving with a constant acceleration of 0.171 m/s2.
a) For how much time and what distance does the student have to run at 5.4m/s before she overtakes the bus?
b) When she reaches the bus how fast is the bus traveling
c) Sketch an x-t graph for both the student and the bus. Take x=0 at the initial position of the student
d) the equations you used in part a to find the time have a second solution, corresponding to a later time for which the student and bus are again at the same place if they continue thier specified motion. Explain the significance of this second solution. How fast is the bus traveling at this point
e) If the students top speed is 3.5 m/s will she catch the bus?
f) is the minumun speed the student must have to just catch up with the bus? For what time and distance must she run in that case

Physics
1 answer:
olya-2409 [2.1K]3 years ago
4 0

Answer:

a) t=8.19s; x=44.2m

b) v=1.401 m/s

c) see attachment

d) The second solution is a later time at which the bus catches the student. v=9.40 m/s

e) No, she won't.

f) v=3.63m/s;t=21.2; x=77m

Explanation:

a) The motion of both the bus and the student can be explained by the equation x= v_{0} +\frac{1}{2}at^{2}. Since the student is not accelerating, but rather maintaining a constant speed; the particular equation that describes the motion of the student is: x_{student} = 5.4 \frac{m}{s} * t. Meanwhile, since the bus starts its motion at an initial velocity of zero, the equation that describes its motion is: x_{bus} =\frac{1}{2} * 0.171 \frac{m}{s^{2} } * t^{2}. The motion of the student relative to that of the bus can be described by the equation: x_{s} =x_{bus} +38.5m. By replacing terms in the last equation we end up with the following quadratic equation: (0.0855 \frac{m}{s^{2} } * t^{2} )-(5.4\frac{m}{s} *t)+38.5m =0. Solving the quadratic equation will yield two solutions; t1=8.19s and t2=55.0s. By plugging in t1 onto the equation that describes the motion of the student we will find the distance runned by her, x=44.2m.

b) The velocity of the bus can be modeled by the equation v^{2} = v_{0} ^{2} +2ax. Since the initial velocity of the bus is zero, the first term of the equation cancels. Next, we solve for v and plug in the acceleration of 0.171 m/s2 and the distance 5.74m (traveled by the bus, note: this is equal to the 44.2m travelled by the student minus the 38.5m that separated the student from the bus at the beginning of the problem).

c) The equations that make up the x-t graph are: x = 5.4 \frac{m}{s} * t and  x =\frac{1}{2} * 0.171 \frac{m}{s^{2} } * t^{2} + 38.5; as described in part a.

d) The first solution states that the student would have to run 44.2 m in 8.19 s in order to catch the bus. But, at that point, the student has a greater speed than that of the bus. So if both were to keep he same specified motion, the student would run past the bus until it reaches a velocity greater than that of the student. At which point, the bus will start to narrow the distance with the student until it finally catches up with the student 55 seconds after both started their respective motion.

e) No, because the quadratic equation (0.0855 \frac{m}{s^{2} } * t^{2} )-(3.5\frac{m}{s} *t)+38.5m =0 has no solution. This means that the two curves that describe the distance vs time graph for both student and bus do not intersect.

f) This answer is reached by finding b of the quadratic equation. The minimum that b can be in order to find a real answer to the quadratic equation is found by solving b^{2} -4ac=0. If we take a = 0.0855 and c = 38.5, then we find that the minimum speed that the student has to run at is 3.63 m/s. If we then solve the quadratic equation (0.0855 \frac{m}{s^{2} } * t^{2} )-(3.63\frac{m}{s} *t)+38.5m =0,we will find that the time the student will run is 21.2 seconds. By pluging in that time in the equation that describes her motion: x_{student} = 3.63 \frac{m}{s} * t we find that she has to run 77 meters in order to catch the bus.

You might be interested in
A humanoid skeleton is found buried in the ashes of a volcano that erupted between 10,000 and 12,000 years ago. when scientists
Inga [223]
From reliable sources in the internet, the half-live of carbon-14 is given to be 5,730 years. In a span of 10,000 to 12,000 years, there are almost or little more than 2 half-lives. Thus, there should be
                                           A(t) = A(0)(1/2)^t
where t is the number of half-lives, in this case 2. Thus, only about 1/4 of the original amount will be left. 
5 0
3 years ago
Read 2 more answers
All of the following measure mass except
mixer [17]
A centimeter cannot measure mass because mass is measured by grams. 

Answer: Centimeter 
5 0
3 years ago
Read 2 more answers
Select all the wave properties that can change how we perceive light waves.amplitudeamplitudecrestscreststimetimefrequency
ASHA 777 [7]

The properties that change how we perceive light waves are the following:

The amplitude of the light wave changes the brightness of light relative to other light waves of the same wavelenghth.

The frequency of the light wave changes the color and the type of the light wave.

6 0
1 year ago
________ In many cartoon shows, a character runs off a cliff, realizes his predicament, and lets out a scream. He continues to s
IrinaVladis [17]

Answer:

Here the source is moving away from the observer so frequency will be smaller than the actual frequency and since the speed is increasing so the frequency is decreasing with time so correct answer is

D) lower than the original pitch and decreasing as he falls.

Explanation:

As we know by the Doppler's effect of sound we have

so we will have

f = f_o(\frac{v}{v + v_s})

so here when source moves away from the observer with a some speed then the frequency of the sound observed by the observer is smaller than the actual frequency

Here we know that the speed of the source is increasing with time as the source is falling under gravity

So we can say that the pitch of the sound will decrease with time

4 0
4 years ago
A quarterback throws a football 40 yards in 4 seconds.what is the average speed the football
lions [1.4K]
The answer is 10 yards per second

8 0
4 years ago
Read 2 more answers
Other questions:
  • A gas sample enclosed in a rigid metal container at room temperature (20.0∘C) has an absolute pressure p1. The container is imme
    11·1 answer
  • Why are objects that fall near Earth's surface rarely in free fall?
    11·1 answer
  • If your chunk of gold weighed 1 N in which case would you have the largest mass of gold?
    7·1 answer
  • A vicious dog is pulling his owner with 150N of force . If the owner is dragged 40 meters , how much work did the dog do ?
    9·1 answer
  • An elite Tour de France cyclist can maintain an output power of 470 W during a sustained climb. Part A At this output power, how
    6·1 answer
  • Question 5
    6·1 answer
  • A small turbo-prop commuter airplane, starting from rest on a Lansing airport runway, accelerates for 22.5s before taking off. I
    6·1 answer
  • In 2007, michael carter (u.s.) set a world record in the shot put with a throw of 24.77 m. what was the initial speed of the sho
    13·1 answer
  • Homeostasis refers to the ability of the body to maintain a stable internal environment despite changes in external conditions.
    11·2 answers
  • Find the components to write this vector in unit vector notation: 63.5 A ​please help
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!