1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jonny [76]
2 years ago
10

Use the equation for motion to answer the question.

Physics
1 answer:
Anika [276]2 years ago
8 0
I choose the option D.
The velocity is constant, so it’s acceleration is 0 m/s^2.
X = 2 + 15 x 1 + 0 = 17 m
You might be interested in
A 150 cm long string vibrates with 3 loops and its frequency is 80 Hz. What will be the wavelength and velocity of the waves?
Vlad1618 [11]

Answer:

since each loop is ewuvivalent to one half wave lenght . the length of the string is equal to two halves of a wavelength . put in the form of an equation in the same reasoning also

5 0
3 years ago
A stationary police car emits a sound of frequency 1240 HzHz that bounces off of a car on the highway and returns with a frequen
lara [203]

Answer:

frequency =  1475.45 Hz

Explanation:

given data

frequency f1 = 1215 Hz,

frequency f2 = 1265 Hz

police car moving vp = 25.0 m/s

solution

speed of sound u = 343 m / s

speed of the other car = v

when the police car is stationary

the frequency the other car receives is

f2 =  f1  ×  \dfrac{u+v}{u}      ................1

and

the frequency the police car receives is

 f2 =  f1  ×  \dfrac{u}{u-v}      ..................2

now from equation 1 and 2

\frac{f2}{f1} = \dfrac{u+v}{u-v}

 \frac{1275}{1240} = \frac{u+v}{u-v}

v =\frac{1275-1240}{1275+1240}\times 343  

v = 4.77 m/s

and

frequency the other car receives is  

f2 = f1 ×   \dfrac{u+v}{u-vp}       ......................3

and

the frequency the police car receives is

f2 = f1 ×  \dfrac{u+vp}{u - v}       .......................4

now we get

f2 = f1 ×  \dfrac{(u+v)(u + vp)}{(u-v)(u-vp)}      

f2 =    1240\times \frac{(343+4.77)(343+25)}{(343-4.77)(343-25)}        

f2 =  1475.45 Hz

 

4 0
3 years ago
Mixing chemicals in a cold pack creates a reaction that:
MatroZZZ [7]
Honestly i don’t know but I’d just guess if I were you
7 0
3 years ago
Read 2 more answers
Two sound waves (speed 343 m/s) have different wavelengths. The first has a wavelength of 5.72 m, and the second a wavelength of
lys-0071 [83]

Answer:

The beat frequency is 30 Hz

Explanation:

Given;

velocity of the two sound waves, v = 343 m/s

wavelength of the first wave, λ₁ = 5.72 m

wavelength of the second wave, λ₂ = 11.44 m

The frequency of the first wave is calculated as follows;

F₁ = v/λ₁

F₁ = 343 / 5.72

F₁ = 59.97 HZ

The frequency of the second wave is calculated as follows;

F₂ = v/λ₂

F₂ = 343 / 11.44

F₂ = 29.98 Hz

The beat frequency is calculated as;

Fb = F₁ - F₂

Fb =  59.97 HZ - 29.98 Hz

Fb = 30 Hz

6 0
3 years ago
20 points and brainiest
DIA [1.3K]

Answer:

electrical energy sometimes.

Explanation:

125.0m

300 degree Fahrenheit

7 0
3 years ago
Other questions:
  • Explain why a magnet sitting next to a wire does not induce a current in a wire
    12·1 answer
  • Jasper and Gemma are going to play on a teeter totter. Gemma gets on first. When Jasper gets on, Gemma moves into the air, but s
    5·2 answers
  • If a ball dropped from a tower reaches the ground after 3.5 seconds, what is the height of the tower? Given: g = –9.8 meters/sec
    14·1 answer
  • Sunlight is reflected off of a puddle of water ahead of a driver. The index of refraction of the water is 1.333. If a driver sit
    7·1 answer
  • An Indy 500 race car's velocity increases from 4.0 m/s to +36
    6·1 answer
  • Help Please! a lot of points for 3 questions
    14·1 answer
  • What is the mass of air in a room
    8·1 answer
  • What is the maximum height achieved if a 0.400 kg mass is thrown straight upward with an initial speed of 40.0 m⋅s−1? Ignore the
    13·1 answer
  • Un Iceberg, con forma aproximada a la de un paralelepípedo (rectángulo en 3D), flota en el mar de modo que la parte fuera del ag
    12·1 answer
  • According to Newton's second law of motion, if we have a rigid, unchanging mass and we observe it accelerating, what must be hap
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!