The answer is D. easier, higher
Metals don't form covalent bonds because of the low ionization energes of the metal atoms. It is easier for them to release electrons rather than sharing it. But this is not always the case, there are some metals that can form covalent bonds.
Given the model from the question,
- The products are: N₂, H₂O and H₂
- The reactants are: H₂ and NO
- The limiting reactant is H₂
- The balanced equation is: 3H₂ + 2NO —> N₂ + 2H₂O + H₂
<h3>Balanced equation </h3>
From the model given, we obtained the ffolowing
- Red => Oxygen
- Blue => Nitrogen
- White => Hydrogen
Thus, we can write the balanced equation as follow:
3H₂ + 2NO —> N₂ + 2H₂O + H₂
From the balanced equation above,
- Reactants: H₂ and NO
- Product: N₂, H₂O and H₂
<h3>How to determine the limiting reactant</h3>
3H₂ + 2NO —> N₂ + 2H₂O + H₂
From the balanced equation above,
3 moles of H₂ reacted with 2 moles of NO.
Therefore,
5 moles of H₂ will react with = (5 × 2) / 3 = 3.33 moles of NO
From the calculation made above, we can see that only 3.33 moles of NO out of 4 moles given are required to react completely with 5 moles of H₂.
Thus, H₂ is the limiting reactant
Learn more about stoichiometry:
brainly.com/question/14735801
#SPJ1
it has less tightly bound electrons, is able to lose electron easily as compare to metal B at it has 4 unpaired electron in 3d sub-shell.
<span> Curium (Cm) is the answer.
Hope this helps.</span>