Answer:
O lowering the temperature of the system
Answer:
The pressure contribution from the heavy particles is 17.5 atm
Explanation:
According to Dalton's law of partial pressures, if there is a mixture of gases which do not react chemically together, then the total pressure exerted by the mixture is the sum of the partial pressures of the individual gases that make up the mixture.
In the simulation:
the pressure of the 50 light particles alone was determined to be 5.9 atm, the pressure of the 150 heavy particles alone was measured to be 17.5 atm,
the total pressure of the mixture of 150 heavy and 50 light particles was measured to be 23.4 atm
Total pressure = partial pressure of Heavy particles + partial pressure of light particles
23.4 atm = partial pressure of Heavy particles + 5.9 atm
Partial pressure of Heavy particles = (23.4 - 5.9) atm
Partial pressure of Heavy particles = 17.5 atm
Therefore, the pressure contribution from the heavy particles is 17.5 atm
Answer:
Explanation:
Both motion of particles and temperature increase
Answer:
3.59x10^21 molecules
Explanation:
1mole of a substance contains 6.02x10^23 molecules.
Therefore, 1mole of C8H18 will also contain 6.02x10^23 molecules
1mole of C8H18 = (12x8) +(18x1) = 96 + 18 = 114g.
1mole (i.e 114g) oh C8H18 contains 6.02x10^23 molecules.
Therefore, 0.68g of C8H18 will contain = (0.68 x 6.02x10^23)/114 = 3.59x10^21 molecules
It is called exothermic reaction because it releases heat and light and it is called combustion reaction because it is reacting and is being oxidised by O2 to MgO.
It can also be called as oxidation reaction since Mg is oxidised to MgO.