Answer : Option 1) nuclei of
and nuclei of
only.
Explanation : Radiation is spontaneously emitted from nuclei of
because this isotope of hydrogen is highly radioactive as compared to other isotopes of hydrogen namely; nuclei of
and nuclei of
.
They have much stable nucleus as compared to nuclei of
.
The more it is unstable the more radiations will be emitted from its nucleus.
135.1kPa
Explanation:
Given parameters:
T1 = 27°C
P1 = 101.325 kPa
T2 = 127°C
Unknown:
P2 = ?
Solution:
Using a derivative of the combined gas law where we assume that the gas has a constant volume, we can solve for the unknown.
At constant volume:

P1 is the initial pressure
T1 is the initial temperature
P2 is the final pressure
T2 is the final temperature
Take the given temperature to K
T1 = 27 + 273 = 300K
T2 = 127 + 273 = 400K
Input the variables:

P2 = 135.1kPa
learn more:
Boyle's law brainly.com/question/8928288
#learnwithBrainly
Answer:
Weak bonds require less energy to form than strong bonds
Explanation:
According to Coulomb's law, the force between two species is inversely proportional to the distance between them. That said, the bigger the atoms are, the greater the bond length should be to form a molecule.
As a result, for a greater bond length, the attraction force is lower than for a shorter bond length. This implies that large atoms would form weak bonds and small atoms would form strong bonds.
Bond energy is defined as the amount of energy required to break the bond. If a bond is weak, it would require a low amount of energy to break it. This is also true for energy of formation, as it's the same process taking place in the opposite direction.