1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
puteri [66]
3 years ago
11

A student practicing for a cross country meet runs 250 m in 30 s. What is her average speed?

Physics
2 answers:
Novay_Z [31]3 years ago
6 0
It's 8.3 m per second
a_sh-v [17]3 years ago
5 0
Just divide it... and you get the answer
You might be interested in
Pirates drag a treasure chest to the left across a sandy beach. In which direction does the treasure chest experience a friction
yawa3891 [41]

Answer:

Chest experiences the friction forces towards right

Explanation:

Friction forces can be defined as a force a body experiences when it is made to slide against the surface. Friction force always acts to stop the the body which is moving. To stop the body, it always acts in the opposite directions to the motion of the body. Therefore, if the treasure chest is dragged across a sandy beach to the left, the frictional forces will act in the right direction.

5 0
2 years ago
Answer for brainlest and 20 points
Sholpan [36]

Answer:

Second option: High frequency and low amplitude

Explanation:

7 0
2 years ago
The
andrey2020 [161]

Answer:

500 in unitivector notion

6 0
3 years ago
What average power must be supplied to the rope to generate sinusoidal waves that have amplitude 0.200 m and wavelength 0.600 m
pychu [463]

Complete question:

A taut rope has a mass of 0.123 kg and a length of 3.54 m. What average power must be supplied to the rope to generate sinusoidal waves that have amplitude 0.200 m and wavelength 0.600 m if the waves are to travel at 28.0 m/s ?

Answer:

The average power supplied to the rope to generate sinusoidal waves is 1676.159 watts.

Explanation:

Velocity = Frequency  X wavelength

V = Fλ ⇒ F = V/λ

F = 28/0.6 = 46.67 Hz

Angular frequency (ω) = 2πF = 2π (46.67) = 93.34π rad/s

Average power supplied to the rope will be calculated as follows

P_{avg} =\frac{1}{2} \mu \omega^2 A^2 V

where;

ω is the angular frequency

A is the amplitude

V is the velocity

μ is mass per unit length = 0.123/3.54 = 0.0348 kg/m

P_{avg} =\frac{1}{2} ( 0.0348)(93.34 \pi )^2 (0.2)^2 (28) = 1676.159 watts

The average power supplied to the rope to generate sinusoidal waves is 1676.159 watts.

6 0
3 years ago
An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude of 0.300 rev/s . The magnitude
Salsk061 [2.6K]

1) 1.2 m/s

First of all, we need to find the angular velocity of the blade at time t = 0.200 s. This is given by

\omega_f = \omega_i + \alpha t

where

\omega_i = 0.300 rev/s is the initial angular velocity

\alpha = 0.895 rev/s^2 is the angular acceleration

Substituting t = 0.200 s, we find

\omega_f = 0.300 + (0.895)(0.200)=0.479 rev/s

Let's now convert it into rad/s:

\omega_f = 2\pi \cdot 0.479 rev/s=3.01 rad/s

The distance of a point on the tip of the blade is equal to the radius of the blade, so half the diameter:

r=\frac{0.800}{2}=0.400 m

And so now we can find the tangential speed at t = 0.200 s:

v=\omega_f r =(3.01)(0.400)=1.2 m/s

2) 2.25 m/s^2

The tangential acceleration of a point rotating at a distance r from the centre of the circle is

a_t = \alpha r

where \alpha is the angular acceleration.

First of all, we need to convert the angular acceleration into rad/s^2:

\alpha = 0.895 rev/s^ \cdot 2 \pi =5.62 rad/s^2

A point on the tip of the blade has a distance of

r = 0.400 m

From the centre; so, the tangential acceleration is

a_t = (5.62)(0.400)=2.25 m/s^2

3) 3.6 m/s^2

The centripetal acceleration is given by

a=\frac{v^2}{r}

where

v is the tangential speed

r is the distance from the centre of the circle

We already calculate the tangential speed at point a):

v = 1.2 m/s

while the distance of a point at the end of the blade from the centre is

r = 0.400 m

Therefore, the centripetal acceleration is

a=\frac{1.2^2}{0.400}=3.6 m/s^2

7 0
3 years ago
Other questions:
  • 17. What is movig from the sound source to the
    5·2 answers
  • A 5 kg block is being pulled to the right by a rope tied to it. the block is accelerating at 2 m/s2 to the right. how much force
    8·2 answers
  • An airplane has a mass of 3.1x10^4 kg and takes off under the influence of a constant net force of 3.7x10^4 N. What is the net f
    5·1 answer
  • A scooter traveling at 4 m/s rides 800 meters. For what duration of time has the scooter been traveling?
    10·2 answers
  • Any help is appreciated! ​
    12·1 answer
  • Which of the following is the primary function of groundwater?
    9·2 answers
  • You throw a football straight up. Air resistance can be neglected. When the football is 4.00 mm above where it left your hand, i
    14·1 answer
  • A copper wire has a mass of 29.33 mg/cm and has a length of 2.5 cm.
    7·1 answer
  • An object weighs 2.6 N in air and 2.2N when completely immersed in water. Determine the relative density of the object (2mks​
    7·1 answer
  • How is the answer d??
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!