The number of moles of moles of Magnesium,chlorine and oxygen atoms in 7.80 moles of Mg(ClO4)2 is calculated as below
find the total number of each atom in Mg(ClO4)2
that is mg = 1 atom
Cl = 1x2 = 2 atoms
O = 4 x2 = 8 atoms
then multiply 7.80 moles with total number of each atom , to get the number moles of each atom
that is
Mg = 7.80 x1= 7.80 moles
cl = 7.80 x2=15.6 moles
O = 7.80 x8= 62.4 moles
Answer:
The direction will be changed
.
Explanation:
According to the principles of motion, if an object is moving with solitary velocity and if an external force is applied to it, then that force changes the position, speed, and direction of that object.
In the given question, an external force is being applied to the toy which will change the direction of that toy.
I think Lithium, an alkali metal with three electrons, is also an exception to the octet rule. Lithium tends to lose one electron to take on the electron configuration of the nearest noble gas, helium, leaving it with two valence electrons. There are two ways in which atoms can satisfy the octet rule
Hope this helps pls mark as the brainliest answer
Answers and Explanation:
a)- The chemical equation for the corresponden equilibrium of Ka1 is:
2. HNO2(aq)⇌H+(aq)+NO−2
Because Ka1 correspond to a dissociation equilibrium. Nitrous acid (HNO₂) losses a proton (H⁺) and gives the monovalent anion NO₂⁻.
b)- The relation between Ka and the free energy change (ΔG) is given by the following equation:
ΔG= ΔGº + RT ln Q
Where T is the temperature (T= 25ºc= 298 K) and R is the gases constant (8.314 J/K.mol)
At the equilibrium: ΔG=0 and Q= Ka. So, we can calculate ΔGº by introducing the value of Ka:
⇒ 0 = ΔGº + RT ln Ka
ΔGº= - RT ln Ka
ΔGº= -8.314 J/K.mol x 298 K x ln (4.5 10⁻⁴)
ΔGº= 19092.8 J/mol
c)- According to the previous demonstation, at equilibrium ΔG= 0.
d)- In a non-equilibrium condition, we have Q which is calculated with the concentrations of products and reactions in a non equilibrium state:
ΔG= ΔGº + RT ln Q
Q= ((H⁺) (NO₂⁻))/(HNO₂)
Q= ( (5.9 10⁻² M) x (6.7 10⁻⁴ M) ) / (0.21 M)
Q= 1.88 10⁻⁴
We know that ΔGº= 19092.8 J/mol, so:
ΔG= ΔGº + RT ln Q
ΔG= 19092.8 J/mol + (8.314 J/K.mol x 298 K x ln (1.88 10⁻⁴)
ΔG= -2162.4 J/mol
Notice that ΔG<0, so the process is spontaneous in that direction.