Electrons are responsible for the transfer of charge.
Hi , the answer is 5.678 x 10^3.
Answer:
157.64 L
Explanation:
We'll begin by converting 30 °C to Kelvin temperature. This can be obtained as follow:
T(K) = T(°C) + 273
T(°C) = 30 °C
T(K) = 30 °C + 273
T (K) = 303 K
Next, we shall convert 600 mmHg to atm. This can be obtained as follow:
760 mmHg = 1 atm
Therefore,
600 mmHg = 600 mmHg × 1 atm / 760 mmHg
600 mmHg = 0.789 atm
Finally, we shall determine the volume of the gas. This can be obtained as follow:
Number of mole (n) = 5 moles
Temperature (T) = 303 K
Pressure (P) = 0.789 atm
Gas constant (R) = 0.0821 atm.L/Kmol
Volume (V) =?
PV = nRT
0.789 × V = 5 × 0.0821 × 303
0.789 × V = 124.3815
Divide both side by 0.789
V = 124.3815 / 0.789
V = 157.64 L
Therefore, the volume of the gas is 157.64 L
Answer:
London Dispersion Force<span> is the strongest interparticle force in a sample of Kr.
Explanation:
Krypton belongs to Noble Gases. They exists in monoatomic form as they are inert in nature and are very less reactive. So, as there is no polarity in Krypton so it will fail to create either Dipole-Dipole or Hydrogen Bond Interactions between its atoms. While, London Dispersion Forces or Van Der Waals forces can exist between Kr atoms. When Kr atoms approaches one other they create Instantaneous dipole. This</span> Instantaneous dipole induces dipole in second Kr atom and the process starts propagating. Hence, interactions are generated between Kr atoms.
Answer:
T = 215.33 °C
Explanation:
The activation energy is given by the Arrhenius equation:

<u>Where:</u>
k: is the rate constant
A: is the frequency factor
Ea: is the activation energy
R: is the gas constant = 8.314 J/(K*mol)
T: is the temperature
We have for the uncatalyzed reaction:
Ea₁ = 70 kJ/mol
And for the catalyzed reaction:
Ea₂ = 42 kJ/mol
T₂ = 20 °C = 293 K
The frequency factor A is constant and the initial concentrations are the same.
Since the rate of the uncatalyzed reaction (k₁) is equal to the rate of the catalyzed reaction (k₂), we have:

(1)
By solving equation (1) for T₁ we have:
Therefore, we need to heat the solution at 215.33 °C so that the rate of the uncatalyzed reaction is equal to the rate of the catalyzed reaction.
I hope it helps you!