Answer:
6.1328 kg
60.16284 N
Explanation:
r = Radius of ball = 0.11 m
= Density of fluid =
(Assumed)
g = Acceleration due to gravity = 9.81 m/s²
m = Mass of ball
V = Volume of ball = 
The weight of the bowling ball will balance the buouyant force

The mass of the bowling ball will be 6.1328 kg
Weight will be 
1.A) 4.9 m
AL2006 Ace
The instant it was dropped, the ball had zero speed.
After falling for 1 second, its speed was 9.8 m/s straight down (gravity).
Its AVERAGE speed for that 1 second was (1/2) (0 + 9.8) = 4.9 m/s.
Falling for 1 second at an average speed of 4.9 m/s, is covered 4.9 meters.
ANYTHING you drop does that, if air resistance doesn't hold it back.
Read more on Brainly.com - brainly.com/question/11776597#readmore
2 idk sorry
Answer:

Explanation:
It is given that,
Speed of the projectile is 0.5 v. Let h is the height above the ground. Using the first equation of motion to find it.


Initial speed of the projectile is v and final speed is 0.5 v.


g is the acceleration due to gravity
Let h is the height above the ground. Using the second equation of motion as :



So, the height of the projectile above the ground is
. Hence, this is the required solution.
Answer:
Atom - the basic particle of matter
Density - calculated from measurements of mass and volume
Motion - calculated from measurements of distance and time
Energy - can change form and move matter
Matter - the scientific word for <em>stuff</em>
<em />
Hope this helps! Please mark brainliest if correct :D