I used to wish that I can fly
First, we assume this as an ideal gas so we use the equation PV=nRT. Then, we use the conditions at STP that would be 1 atm and 273.15 K. We calculate as follows:
PV= nRT
PV= mRT/MM
1 atm (.245 L) =1.30(0.08206)(273.15) / MM
MM = 118.94 g/mol <--- ANSWER
D will hit last because if air resistance is null then the only force enacting on the balls is the force of gravity. Force of Gravity has an acceleration of 9.81 ms^2 and so every ball had the same acceleration and ball D is the furthest away from the floor.
Answer:
120 W lightbulb
Explanation:
Let the two lightbulb be A and B respectively.
Given the following data;
Power A = 120W
Power B = 90W
Voltage = 120V
To find the current flowing through each lightbulb;
a. For lightbulb A
Power = current * voltage
120 = current * 120
Current = 120/120
Current = 1 Ampere.
b. For lightbulb B
Current = power/voltage
Current = 90/120
Current = 0.75 Amperes
Therefore, the lightbulb that carries more current is A with 1 Ampere.
Answer:
(a) 43.2 kC
(b) 0.012V kWh
(c) 0.108V cents
Explanation:
<u>Given:</u>
- i = current flow = 3 A
- t = time interval for which the current flow =

- V = terminal voltage of the battery
- R = rate of energy = 9 cents/kWh
<u>Assume:</u>
- Q = charge transported as a result of charging
- E = energy expended
- C = cost of charging
Part (a):
We know that the charge flow rate is the electric current flow through a wire.

Hence, 43.2 kC of charge is transported as a result of charging.
Part (b):
We know the electrical energy dissipated due to current flow across a voltage drop for a time interval is given by:

Hence, 0.012V kWh is expended in charging the battery.
Part (c):
We know that the energy cost is equal to the product of energy expended and the rate of energy.

Hence, 0.108V cents is the charging cost of the battery.