1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mixer [17]
3 years ago
10

Yellow-green light has a wavelength of 560 nm. What is its frequency?

Physics
2 answers:
Natasha2012 [34]3 years ago
7 0
5.4 x 1014Hz
wavelength x frequency = the speed of light
Sav [38]3 years ago
6 0

Answer:

The frequency is  5.4 × 10^14Hz

Explanation:

You might be interested in
Which of these would make the best telescope?
Simora [160]

Answer:A i think or D but its not c or b

Explanation:

5 0
2 years ago
for any object suspended by any number of ropes, wires, or chains, how is the total amount of tension (tension in each rope adde
Sveta_85 [38]

Answer:

To calculate the tension on a rope holding 1 object, multiply the mass and gravitational acceleration of the object. If the object is experiencing any other acceleration, multiply that acceleration by the mass and add it to your first total.

Explanation:

The tension in a given strand of string or rope is a result of the forces pulling on the rope from either end. As a reminder, force = mass × acceleration. Assuming the rope is stretched tightly, any change in acceleration or mass in objects the rope is supporting will cause a change in tension in the rope. Don't forget the constant acceleration due to gravity - even if a system is at rest, its components are subject to this force. We can think of a tension in a given rope as T = (m × g) + (m × a), where "g" is the acceleration due to gravity of any objects the rope is supporting and "a" is any other acceleration on any objects the rope is supporting.[2]

For the purposes of most physics problems, we assume ideal strings - in other words, that our rope, cable, etc. is thin, massless, and can't be stretched or broken.

As an example, let's consider a system where a weight hangs from a wooden beam via a single rope (see picture). Neither the weight nor the rope are moving - the entire system is at rest. Because of this, we know that, for the weight to be held in equilibrium, the tension force must equal the force of gravity on the weight. In other words, Tension (Ft) = Force of gravity (Fg) = m × g.

Assuming a 10 kg weight, then, the tension force is 10 kg × 9.8 m/s2 = 98 Newtons.

7 0
3 years ago
Two electric charges, held a distance, dd, apart experience an electric force of magnitude, FF, between them. If one of the char
lorasvet [3.4K]

Answer:

F'=2F

Explanation:

The Coulomb's law states that the magnitude of the electrostatic force between two charges is directly proportional to the product of the magnitudes of charges and inversely proportional to the square of the distance between them:

F=\frac{kq_1q_2}{d^2}

In this case, we have q_1'=2q_1:

F'=\frac{kq'_1q_2}{d^2}\\F'=\frac{k(2q_1)q_2}{d^2}\\F'=2\frac{kq_1q_2}{d^2}\\F'=2F

3 0
3 years ago
Jason walks 20 m East, turns around and 20 m West, Finally, he walks 10 rn North. This takes 20 s. what is Jason's velocity​
serious [3.7K]

Answer:

0.5 m/s north

Explanation:

Take east to be +x, west to be -x, north to be +y, and south to be -y.

His displacement in the x direction is:

x = 20 m − 20 m = 0 m

His displacement in the y direction is:

y = 10 m

His total displacement is therefore 10 m north.

His velocity is equal to displacement divided by time.

v = 10 m north / 20 s

v = 0.5 m/s north

3 0
3 years ago
An aluminum wire having a cross-sectional area equal to 2.20 10-6 m2 carries a current of 4.50 A. The density of aluminum is 2.7
Kazeer [188]

Answer:

The drift speed of the electrons in the wire is 2.12x10⁻⁴ m/s.

Explanation:

We can find the drift speed by using the following equation:

v = \frac{I}{nqA}

Where:

I: is the current = 4.50 A

n: is the number of electrons

q: is the modulus of the electron's charge = 1.6x10⁻¹⁹ C

A: is the cross-sectional area = 2.20x10⁻⁶ m²

We need to find the number of electrons:

n = \frac{6.022\cdot 10^{23} atoms}{1 mol}*\frac{1 mol}{26.982 g}*\frac{2.70 g}{1 cm^{3}}*\frac{(100 cm)^{3}}{1 m^{3}} = 6.03 \cdot 10^{28} atom/m^{3}                  

Now, we can find the drift speed:

v = \frac{I}{nqA} = \frac{4.50 A}{6.03 \cdot 10^{28} atom/m^{3}*1.6 \cdot 10^{-19} C*2.20 \cdot 10^{-6} m^{2}} = 2.12 \cdot 10^{-4} m/s              

Therefore, the drift speed of the electrons in the wire is 2.12x10⁻⁴ m/s.

I hope it helps you!      

4 0
2 years ago
Other questions:
  • A motorcycle stunt driver zooms off the end of a cliff at a speed of 30 meters per second. If he lands after 0.75 seconds, what
    11·1 answer
  • 0.403 L is equal to: <br> 4.03 mL <br> 40.3 mL <br> 403 mL <br> 4,030 mL
    15·2 answers
  • A ball is thrown into the air at an angle. What is the instantaneous velocity of this ball in the vertical direction at the top
    15·1 answer
  • Which statement describes a resistor in a circuit?
    15·2 answers
  • Consider a comet with an elliptic orbit whose aphelion and perihelion distances are rA = 5.00109 km and rP = 8.00107 km. e. Fi
    9·1 answer
  • Identify the physical property of a material that is NOT a good conductor of heat.
    9·1 answer
  • A motorcycle has a velocity of 24 m/s, due south as it passes a car with a velocity of 15 m/s, due north. What is the magnitude
    13·1 answer
  • You kick a soccer ball with a speed of 31 m/s at an angle of 50 degrees. How long does it take the ball to reach the top of its
    10·1 answer
  • A 5.00-kg object is initially at rest. The object is acted on by a 9.00-N force toward the east for 3.00 s. No force acts on the
    7·1 answer
  • Will give correct answer brainliest
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!