Answer:
h = 3.3 m (Look at the explanation below, please)
Explanation:
This question has to do with kinetic and potential energy. At the beginning (time of launch), there is no potential energy- we assume it starts from the ground. There, is, however, kinetic energy
Kinetic energy =
m
Plug in the numbers =
(4.0)(
)
Solve = 2(64) = 128 J
Now, since we know that the mechanical energy of a system always remains constant in the absence of outside forces (there is no outside force here), we can deduce that the kinetic energy at the bottom is equal to the potential energy at the top. Look at the diagram I have attached.
Potential energy = mgh = (4.0)(9.8)(h) = 39.2(h)
Kinetic energy = Potential Energy
128 J = 39.2h
h = 3.26 m
h= 3.3 m (because of significant figures)
The main advantage of an electromagnet over a permanent magnet is that the magnetic field can be quickly changed by controlling the amount of electric current in the winding. However, unlike a permanent magnet that needs no power, an electromagnet requires a continuous supply of current to maintain the magnetic field.
In genetic traits, p and q represent the relative probabilities of the two alleles manifesting. If these two are the only options (ex. a dominant one and a recessive one), then the probabilities of both must sum up to 1. In this case, since we are given that q = 0.4, then p + q = 1, p + 0.4 = 1, and p = 0.6.
Answer:
Net forces which pushes the window is 30342.78 N.
Explanation:
Given:
Dimension of the office window.
Length of the window =
m
Width of the window =
m
Area of the window = 
Difference in air pressure = Inside pressure - Outside pressure
=
atm =
atm
Conversion of the pressure in its SI unit.
⇒
atm =
Pa
⇒
atm =
Pa
We have to find the net force.
We know,
⇒ Pressure = Force/Area
⇒ 
⇒ 
⇒ Plugging the values.
⇒
⇒
Newton (N)
So,
The net forces which pushes the window is 30342.78 N.
to your question is 54 cm