Answer:
r = 0.86
Explanation:
Correlation coefficients are the strength of the relationship between two variables.
Correlations can indicate anywhere between
- 1 - for a strong positive relationship.
- -1 - for a strong negative relationship.
- 0 - for no relationship at all.
Looking at sample correlation coefficient formula which says
=
÷ (
×
)
where
and
are the sample deviations and
is the sample covariance, all of which will remain the same for Maria and John.
Hence, John's correlation will be approximately 0.86 since he would have approximately the same measurement as Maria's measurement when Maria's measurement is converted from centimeters to inches.
Answer:
Heat energy does not cool. Objects cool. Energy is not an object. Now, what happens when an object cools is that it gives off some of its thermal energy by one or more mechanisms: radiation, conduction, or convection. In radiation the energy escaped the object as electromagnetic waves - you see the red hot poker slowly dim as it cools, in conduction the energy is transferred Mechanically by the atoms of the hot object being in physical contact with those of the cool object and in convection the hot material moves to a cooler region where it gives up its heat energy by either radiation or conduction.
At some speed, the drag or force of resistance will equal the gravitational pull on the object. At this point the object ceases to accelerate and continues falling at a constant speed called the terminal velocity (also called settling velocity).
(a) The velocity ratio of the screw is 1570.8.
(b) The mechanical advantage of the screw is 785.39.
<h3>
Velocity ratio of the screw</h3>
The velocity ratio of the screw is calculated as follows;
V.R = 2πr/P
where;
- P is the pitch = 1/10 cm = 0.1 cm = 0.001 m
- r is radius = 25 cm = 0.25 m
V.R = (2π x 0.25)/(0.001)
V.R = 1570.8
<h3>Mechanical advantage of the screw</h3>
E = MA/VR x 100%
0.5 = MA/1570.8
MA = 785.39
Learn more about mechanical advantage here: brainly.com/question/18345299
#SPJ1
Answer:
H_w = 2.129 m
Explanation:
given,
Width of the weir, B = 1.2 m
Depth of the upstream weir, y = 2.5 m
Discharge, Q = 0.5 m³/s
Weir coefficient, C_w = 1.84 m
Now, calculating the water head over the weir




now, level of weir on the channel
H_w = y - H
H_w = 2.5 - 0.371
H_w = 2.129 m
Height at which weir should place is equal to 2.129 m.