hmax = 5740.48 m. The maximum height that a cannonball fired at 420 m/s at a 53.0° angles is 5740.48m.
This is an example of parabolic launch. A cannonball is fired on flat ground at 420 m/s at a 53.0° angle and we have to calculate the maximum height that it reach.
V₀ = 420m/s and θ₀ = 53.0°
So, when the cannonball is fired it has horizontal and vertical components:
V₀ₓ = V₀ cos θ₀ = (420m/s)(cos 53°) = 252.76 m/s
V₀y = V₀ cos θ₀ = (420m/s)(cos 53°) = 335.43m/s
When the cannoball reach the maximum height the vertical velocity component is zero, that happens in a tₐ time:
Vy = V₀y - g tₐ = 0
tₐ = V₀y/g
tₐ = (335.43m/s)/(9.8m/s²) = 34.23s
Then, the maximum height is reached in the instant tₐ = 34.23s:
h = V₀y tₐ - 1/2g tₐ²
hmax = (335.43m/s)(34.23s)-1/2(9.8m/s²)(34.23s)²
hmax = 11481.77m - 5741.29m
hmax = 5740.48m
Answer:
Air moves from regions of high pressure to regions of low pressure.
Explanation:
When airs moves horizontally from regions of high pressure to low pressure, it creates wind. If the difference between high and low pressure is greater, then it makes the wind faster.
Best of Luck!
This question is checking to see whether you understand the meaning
of "displacement".
Displacement is a vector:
-- Its magnitude (size) is the distance between the start-point and
the end-point, no matter what route might have been followed along
the way.
-- Its direction is the direction from the start-point to the end-point.
Talking about the Earth's orbit around the sun, we can forget about
the direction of the displacement, and just talk about its magnitude
(size).
If we pretend that the sun is not moving and dragging the whole
solar system along with it, then what do we see the Earth doing
in one year ?
We mark the place where the Earth is at the stroke of midnight
on New Year's Eve. Then we watch it as it swings around through
this gigantic orbit, all the way around the sun, and in a year, it's back
to the same point that we marked !
So what's the magnitude of the displacement in exactly one year ?
It's the distance between the start-point and the end-point. But the
Earth came back to the same place it started from, so there's no
separation at all between the start-point and the end-point.
The Earth covered a huge distance in that year, but the displacement
is zero.
It would mostly be on their website.