Answer:
2.461
Explanation:
Let mass of Bonzo = m1
Mass of Ender =m2
When they push eachother from stationary position
Initial velocity of Bonzo = Vib=0 m/s
Final velocity of Bonzo = Vfb= 1.3 m/s
Initial velocity of Ender = Vie= 0 m/s
Final velocity of Ender = Vfe= -3.1 m/s
We know initial momentum = final momentum
==> m1Vib+m2Vie = m1Vfb+m2Vfe
==> 0+0= m1×1.3 +m2×(-3.1)
==> 1.3m1-3.1m2=0
==> 1.3 m1 = 3.2 m2
==> m1/m2 = 3.2/1.3
==> m1/m2 = 2.461
Answer:
O Column 1 should be titled "Time," and Column 2 shouldbe titled "Velocity,"
O Column 1 should be titled "Velocity," and Column 2 should be titled "Time."
O Column 1 should be titled "Time," and Column 2 should be titled "Acceleration."
O Column 1 should be titled "Acceleration," and Column 2 should be titled "Time."
Answers:
a)The balloon is 68 m away of the radar station
b) The direction of the balloon is towards the radar station
Explanation:
We can solve this problem with the Doppler shift equation:
(1)
Where:
is the actual frequency of the sound wave
is the "observed" frequency
is the velocity of sound
is the velocity of the observer, which is stationary
is the velocity of the source, which is the balloon
Isolating
:
(2)
(3)
(4) This is the velocity of the balloon, note the negative sign indicates the direction of motion of the balloon: It is moving towards the radar station.
Now that we have the velocity of the balloon (hence its speed, the positive value) and the time (
) given as data, we can find the distance:
(5)
(6)
Finally:
(8) This is the distance of the balloon from the radar station
Answer:
Although the core and mantle are about equal in thickness, the core actually forms only 15 percent of the Earth's volume, whereas the mantle occupies 84 percent. The crust makes up the remaining 1 percent.
A. Density only depends on the substance. It doesn't matter whether you have a little chip of it or a supertanker full of it ... the density doesn't change.