Answer:
B. They will conserve energy during reproduction
Explanation:
Answer:
C
Explanation:
I'm assuming that you meant to type neutral charge.
Since electrons are negative and protons are positive, having a balanced number of both of these would cause an atom to have a neutral charge.
To calculate for the final temperature, we need to remember that the heat rejected should be equal to the absorbed by the other system. We calculate as follows:
Q1 = Q2
(mCΔT)1 = (mCΔT)2
We can cancel m assuming the two systems are equal in mass. Also, we cancel C since they are the same system. This leaves us,
(ΔT)1 = (ΔT)2
(T - 80) = (0 - T)
T = 40°C
Answer: Electronegativity increases as the size of an atom decrease.
Explanation: Electronegativity is the measure of the ability of an atom in a bond to attract electrons to itself.
Electronegativity increases across a period and decreases down a group.
Towards the left of the table, valence shells are less than half full, so these atoms (metals) tend
to lose electrons and have low electronegativity. Towards the right of the table, valence shells are more than half full, so these atoms (nonmetals) tend to gain electrons and have high electronegativity.
Down a group, the number of energy levels (n) increases, and so does the distance between the nucleus and the outermost orbital. The increased distance and the increased shielding weaken the nuclear attraction, and so an atom can’t attract electrons as strongly.
A. a mixture is a combination of two or more substances in which each substance retains its own properties.