1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ugo [173]
3 years ago
13

A river 500 ft wide flows with a speed of 8 ft/s with respect to the earth. A woman swims with a speed of 4 ft/s with respect to

the water.
1) If the woman heads directly across the river, how far downstream is she swept when she reaches the opposite bank?
2) If she wants to be swept a smaller distance downstream, she heads a bit upstream. Suppose she orients her body in the water at an angle of 37° upstream (where 0° means heading straight accross, how far downstream is she swept before reaching the opposite bank?
3) For the conditions, how long does it take for her to reach the opposite bank?
Physics
1 answer:
White raven [17]3 years ago
7 0

Answer:

1) \Delta s=1000\ ft

2)  \Delta s'=998.11\ ft.s^{-1}

3) t\approx125\ s

t'\approx463.733\ s

Explanation:

Given:

width of river, w=500\ ft

speed of stream with respect to the ground, v_s=8\ ft.s^{-1}

speed of the swimmer with respect to water, v=4\ ft.s^{-1}

<u>Now the resultant of the two velocities perpendicular to each other:</u>

v_r=\sqrt{v^2+v_s^2}

v_r=\sqrt{4^2+8^2}

v_r=8.9442\ ft.s^{-1}

<u>Now the angle of the resultant velocity form the vertical:</u>

\tan\beta=\frac{v_s}{v}

\tan\beta=\frac{8}{4}

\beta=63.43^{\circ}

  • Now the distance swam by the swimmer in this direction be d.

so,

d.\cos\beta=w

d\times \cos\ 63.43=500

d=1118.034\ ft

Now the distance swept downward:

\Delta s=\sqrt{d^2-w^2}

\Delta s=\sqrt{1118.034^2-500^2}

\Delta s=1000\ ft

2)

On swimming 37° upstream:

<u>The velocity component of stream cancelled by the swimmer:</u>

v'=v.\cos37

v'=4\times \cos37

v'=3.1945\ ft.s^{-1}

<u>Now the net effective speed of stream sweeping the swimmer:</u>

v_n=v_s-v'

v_n=8-3.1945

v_n=4.8055\ ft.s^{-1}

<u>The  component of swimmer's velocity heading directly towards the opposite bank:</u>

v'_r=v.\sin37

v'_r=4\sin37

v'_r=2.4073\ ft.s^{-1}

<u>Now the angle of the resultant velocity of the swimmer from the normal to the stream</u>:

\tan\phi=\frac{v_n}{v'_r}

\tan\phi=\frac{4.8055}{2.4073}

\phi=63.39^{\circ}

  • Now let the distance swam in this direction be d'.

d'\times \cos\phi=w

d'=\frac{500}{\cos63.39}

d'=1116.344\ ft

<u>Now the distance swept downstream:</u>

\Delta s'=\sqrt{d'^2-w^2}

\Delta s'=\sqrt{1116.344^2-500^2}

\Delta s'=998.11\ ft.s^{-1}

3)

Time taken in crossing the rive in case 1:

t=\frac{d}{v_r}

t=\frac{1118.034}{8.9442}

t\approx125\ s

Time taken in crossing the rive in case 2:

t'=\frac{d'}{v'_r}

t'=\frac{1116.344}{2.4073}

t'\approx463.733\ s

You might be interested in
An ice cube sitting on a piece of wood would melt:
Aleksandr [31]
The answer would be slowly
3 0
3 years ago
Read 2 more answers
A pickup truck is traveling down the highway at a steady speed of 30.1 m/s. The truck has a drag coefficient of 0.45 and a cross
Sav [38]

Answer:

The energy that the truck lose to air resistance per hour is 87.47MJ

Explanation:

To solve this exercise it is necessary to compile the concepts of kinetic energy because of the drag force given in aerodynamic bodies. According to the theory we know that the drag force is defined by

F_D=\frac{1}{2}\rhoC_dAV^2

Our values are:

V=30.1m/s

C_d=0.45

A=3.3m^2

\rho=1.2kg/m^3

Replacing,

F_D=\frac{1}{2}(1.2)(0.45)(3.3)(30.1)^2

F_D=807.25N

We need calculate now the energy lost through a time T, then,

W = F_D d

But we know that d is equal to

d=vt

Where

v is the velocity and t the time. However the time is given in seconds but for this problem we need the time in hours, so,

W=(807.25N)(30.1m/s)(3600s/1hr)

W=87.47*10^6J (per hour)

Therefore the energy that the truck lose to air resistance per hour is 87.47MJ

4 0
3 years ago
What is the direction of the centripetal force when applied to an object?
mihalych1998 [28]
For an object moving in a path that's a circle or a part of one,
the centripetal force acts in the direction toward the center of
the circle.  That direction is perpendicular to the way the object
is moving.
3 0
3 years ago
Read 2 more answers
Starting from rest, the distance a freely-falling object will fall in 0.50 second is?
FinnZ [79.3K]

Answer:

1.23 m

Explanation:

The vertical distance covered by a free-falling object starting from rest in a time t is

y=\frac{1}{2}gt^2

where

g = 9.8 m/s^2 is the acceleration due to gravity

In this problem, we have

t = 0.50 s

So the distance covered is

y=\frac{1}{2}(9.8 m/s^2)(0.50 s)^2=1.23 m

8 0
3 years ago
the planet neptune is approximately 4.5*10^9 kilometers from the sun. The planet Venus is approximately 1.1*10^8 kilometers from
Firlakuza [10]

Answer:

Neptune is approximately 41 times as far from the sun as Venus

Explanation:

Estimate = distance of Neptune from the sun ÷ distance of Venus from the sun = 4.5×10^9 ÷ 1.18×10^8 = 40.9 (approximately 41)

7 0
3 years ago
Other questions:
  • A heavy object falls with the acceleration as a light object during free fall. why?
    5·1 answer
  • Balance this chemical equation Fe(s) + 02(g) --- Fe0(s)
    10·1 answer
  • The rock beneath the continents is made of _____.
    13·2 answers
  • discharge occurs when oppositely charged objects get close enough for the air between them to become electrically charged.
    12·1 answer
  • The Hawaiian islands formed when molten material erupted from the ocean floor. As the lava flowed out, cooled, and hardened, mas
    8·2 answers
  • The unit of area is a derived unit. Why?
    5·1 answer
  • The force required to maintain an object at a constant speed while on frictionless ice is
    11·1 answer
  • Tell me pls<br>question: one way to protect property from damage. (hurricane) (hurricane)​
    6·2 answers
  • A student measures the voltage and current between two points in an electrical circuit. If the voltage is 220 V and the current
    15·1 answer
  • Describe the relationship between the Law of Conservation of Matter and balancing equations.
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!