Usually in this context you would be referring to the boiling and freezing point of a NaCl <em>solution</em> (saltwater) compared to pure H_{2}O. Sematics would be different for NaCl compound itself, you would say melting and boiling point for a solid substance- and the temperatures would be very, very radical (high).
The boiling point of pure water is 100 degrees C (212 F), and the freezing/melting point is below 0 degrees C (32 F). For a salt water solution, the boiling point is raised and the melting point is lowered. This means that water will stay liquid for an increased range of temperature. Depending on the amount of NaCl solute in the water, the boiling and melting points may change a few degrees.
Ba 1s²2s²2p⁶3s²3p⁶4s²3d¹⁰4p⁶5s²4d¹⁰5p⁶6s² → [Xe]6s²
Ba - 2e⁻ → Ba⁺² [Xe]
2 HClO(aq) + Ca(OH)2(aq) = 2 H2O(l) + Ca(ClO)2(aq) is the balanced equation
<h3>Further explanation</h3>
Given
Reaction
H₂ (g) + I₂ (g) → 2HI(g)
Required
The equilibrium constant
Solution
The equilibrium constant is the value of the product in the equilibrium state of the substance in the right (product) divided by the substance in the left (reactant) with the exponents of each reaction coefficient
The equilibrium constant for reaction
pA + qB ⇒ mC + nD
![\large {\boxed {\bold {K ~ = ~ \frac {[C] ^ m [D] ^ n} {[A] ^ p [B] ^ q}}}}](https://tex.z-dn.net/?f=%5Clarge%20%7B%5Cboxed%20%7B%5Cbold%20%7BK%20~%20%3D%20~%20%5Cfrac%20%7B%5BC%5D%20%5E%20m%20%5BD%5D%20%5E%20n%7D%20%7B%5BA%5D%20%5E%20p%20%5BB%5D%20%5E%20q%7D%7D%7D%7D)
So for the above reaction :
![\tt K=\dfrac{[HI]^2}{[H_2][I_2]}](https://tex.z-dn.net/?f=%5Ctt%20K%3D%5Cdfrac%7B%5BHI%5D%5E2%7D%7B%5BH_2%5D%5BI_2%5D%7D)