Answer:
Explanation:
Electric field due to a charge Q at a point d distance away is given by the expression
E = k Q / d , k is a constant equal to 9 x 10⁹
Field due to charge = 3 X 10⁻⁹ C
E = E = 
Field due to charge = 4 X 10⁻⁹ C
![E = [tex]\frac{9\times 10^9\times4\times10^{-9}}{(2-d)^2}](https://tex.z-dn.net/?f=E%20%3D%20%5Btex%5D%5Cfrac%7B9%5Ctimes%2010%5E9%5Ctimes4%5Ctimes10%5E%7B-9%7D%7D%7B%282-d%29%5E2%7D)
These two fields will be equal and opposite to make net field zero
=
[/tex]


d = 0.928
Dr Tony Allision hypothesize that the sickle cell disease is connected with malaria. The disease carried by the mosquito is more common in coastal area and near Lake Victoria while it is less common in the highlands. He made a further hypothesis that sickle cell disease is common in areas where malaria is also common.
Many ecosystems and plants are damaged or destroyed when a volcano erupts.
Answer:
A.model the reflection of a light wave
The Wave Model of Light Toolkit provides teachers with standards-based resources for designing lesson plans and units that pertain to such topics as the light's wavelike behaviors, wave-particle duality, light-wave interference, and light polarization
B. .model the absorption of a light wave
The simplest model is the Drude/Lorentz model, where the light wave makes charged particle oscillate while the particle is also being damped by a force of friction (damping force)
A mirror provides the foremost common model for reflective light wave reflection and generally consists of a glass sheet with a gold coating wherever the many reflections happen. Reflection is increased in metals by suppression of wave propagation on the far side their skin depths
C.model the transmimssion of a light wave
The Wave Model describes how light propagates in the same way as we model ocean waves moving through the water. By thinking of light as an oscillating wave, we can account for properties of light such as its wavelength and frequency. By including wavelength information, the Wave Model can be used to explain colors.
Explanation:
The electrostatic potential energy, U, of one point charge q at position d in the presence of an electric field E is defined as the negative of the work W done by the electrostatic force to bring it from the reference position d to that position

Thus, to double the electric potential energy U we need to reduce the distance of separation by half (1/2) because they are inversely proportion