1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anestetic [448]
3 years ago
11

2.85 A police car is traveling at a velocity of 18.0 m/s due north, when a car zooms by at a constant velocity of 42.0 m/s due n

orth. The police officer begins to pursue the speeder - first there is a 0.800 s reaction time when the officer has no change in speed, then the officer accelerates at 5.00 m/s2. Including the reaction time, how long does it take for the police car to reach the same position as the speeding car
Physics
1 answer:
katrin2010 [14]3 years ago
5 0

Answer:

11.1 s

Explanation:  

Speed of the police car as given = v = 18 m/s

Speed of the car = V = 42 m/s

Reaction time = t = 0.8 s

Distance traveled by the police car during the reaction time = d₁= 0.8 x 18 = 14.4 m

Distance traveled by speeding car = d₂ =0.8 x 42 = 33.6 m

Acceleration of the police car = a = 5 m/s/s

The police car can catch the speeding car only if it travels a distance equal to the speeding car in a time t.

Distance traveled by the police car = D = d₁ + v t +0.5 at², according to the kinematic equation.

⇒ D = 14.4 + 18 t + 0.5 (5) t²

⇒ D = 14.4 + 18 t+2.5 t²  → (1)

For the speeding car, distance traveled is D = 33.6 + 42 t, since it is constant velocity. Substitute for D from the above equation (1).

⇒ 14.4 + 18 t+2.5 t²=  33.6 + 42 t

⇒ 2.5 t² -24 t - 19.2 = 0

⇒ t = 10.3 s

Total time = t +0.8 s

⇒ Time taken for the police car to reach the speeding car = 10.3+0.8= 11.1 s

You might be interested in
The box leaves position x=0 with speed v0. The box is slowed by a constant frictional force until it comes to rest at position x
Diano4ka-milaya [45]

Answer:

Ff=m\times \dfrac{V_o^2}{2X_1}

Explanation:

Given that

At X=0 V=Vo

At X=X1  V=0

As we know that friction force is always try to oppose the motion of an object. It means that it provide acceleration in the negative direction.

We know that

V^2=U^2-2aS

0=V_o^2-2a X_1

a=\dfrac{V_o^2}{2X_1}

So the friction force on the box

Ff= m x a

Ff=m\times \dfrac{V_o^2}{2X_1}

Where m is the mass of the box.

4 0
3 years ago
A ball is tossed with enough speed straight up so that it is in the air several seconds. (a) What is the velocity of the ball wh
irina1246 [14]

(a) Zero

When the ball reaches its highest point, the direction of motion of the ball reverses (from upward to downward). This means that the velocity is changing sign: this also means that at that moment, the velocity must be zero.

This can be also understood in terms of conservation of energy: when the ball is tossed up, initially it has kinetic energy

K=\frac{1}{2}mv^2

where m is the ball's mass and v is the initial speed. As it goes up, this kinetic energy is converted into potential energy, and when the ball reaches the highest point, all the kinetic energy has been converted into potential energy:

U=mgh

where g is the gravitational acceleration and h is the height of the ball at highest point. At that point, therefore, the potential energy is maximum, while the kinetic energy is zero, and so the velocity is also zero.

(b) 9.8 m/s upward

We can find the velocity of the ball 1 s before reaching its highest point by using the equation:

a=\frac{v-u}{t}

where

a = g = -9.8 m/s^2 is the acceleration due to gravity, which is negative since it points downward

v = 0 is the final velocity (at the highest point)

u is the initial velocity

t = 1 s is the time interval

Solving for u, we find

u=v-at = 0 -(-9.8 m/s^2)(1 s)= +9.8 m/s

and the positive sign means it points upward.

(c) -9.8 m/s

The change in velocity during the 1-s interval is given by

\Delta v = v -u

where

v = 0 is the final velocity (at the highest point)

u = 9.8 m/s is the initial velocity

Substituting, we find

\Delta v = 0 - (+9.8 m/s)=-9.8 m/s

(d) 9.8 m/s downward

We can find the velocity of the ball 1 s after reaching its highest point by using again the equation:

a=\frac{v-u}{t}

where this time we have

a = g = -9.8 m/s^2 is the acceleration due to gravity, still negative

v  is the final velocity (1 s after reaching the highest point)

u = 0 is the initial velocity (at the highest point)

t = 1 s is the time interval

Solving for v, we find

v = u+at = 0 +(-9.8 m/s^2)(1 s)= -9.8 m/s

and the negative sign means it points downward.

(e) -9.8 m/s

The change in velocity during the 1-s interval is given by

\Delta v = v -u

where here we have

v = -9.8 m/s is the final velocity (1 s after reaching the highest point)

u = 0 is the initial velocity (at the highest point)

Substituting, we find

\Delta v = -9.8 m/s - 0=-9.8 m/s

(f) -19.6 m/s

The change in velocity during the overall 2-s interval is given by

\Delta v = v -u

where in this case we have:

v = -9.8 m/s is the final velocity (1 s after reaching the highest point)

u = +9.8 m/s is the initial velocity (1 s before reaching the highest point)

Substituting, we find

\Delta v = -9.8 m/s - (+9.8 m/s)=-19.6 m/s

(g) -9.8 m/s^2

There is always one force acting on the ball during the motion: the force of gravity, which is given by

F=mg

where

m is the mass of the ball

g = -9.8 m/s^2 is the acceleration due to gravity

According to Newton's second law, the resultant of the forces acting on the body is equal to the product of mass and acceleration (a), so

mg = ma

which means that the acceleration is

a= g = -9.8 m/s^2

and the negative sign means it points downward.

7 0
3 years ago
What is the acceleration of an 24 kg object that applies a force of 130N?
WITCHER [35]

Answer:

To find the acceleration of the object we have to apply Newton second law of motion that is F = mass × acceleration.

Explanation:

Given ,

F = 130N

M = 24kg

A = ?

F = m× a

then ,

130N = 24kg ×a

a = 130/24 = 5 m/s.

6 0
2 years ago
What is jupiters orbital period
padilas [110]
11.86 years.  Usually memorized as "12 years".
8 0
3 years ago
A 1.5-kilogram cart initially moves at 2.0 meters per second. It is brought to rest by a constant net force in 0.30 second. What
AnnZ [28]
Acceleration = (change in speed) / (time for the change)

Change in speed = (speed at the end) minus (speed at the beginning.

The cart's acceleration is

                               (0 - 2 m/s) / (0.3 sec)

                           = ( -2 / 0.3 ) (m/s²)  =  -(6 and 2/3) m/s² .

Newton's second law of motion says

                             Force = (mass) x (acceleration) .

For this cart:      Force = (1.5 kg) x ( - 6-2/3 m/s²)

                                       = ( - 1.5 x 20/3 ) (kg-m/s²)

<span>                                       =      </span>- 10 newtons .

<span>The force is negative because it acts opposite to the direction </span>
<span>in which the cart is moving, it causes a negative acceleration, </span>
<span>and it eventually stops the cart.</span>
6 0
3 years ago
Other questions:
  • A 24-cm-diameter vertical cylinder is sealed at the top by a frictionless 15 kg piston. The piston is 90 cm above the bottom whe
    5·1 answer
  • What kinds of space and matter can light travel through
    5·2 answers
  • What kind of trait is bird migration?​
    9·1 answer
  • A pump uses a piston of 15 cm diameter that moves at 2.0 cm/s as it pushes a fluid through a pipe. what is the speed of the flui
    9·1 answer
  • A 2.0 kilogram cart moving due east at 6.0 meters per second collides with a 3.0 kilogram cart moving due west. the carts stick
    6·1 answer
  • Describe and open, closed, and isolated system
    13·1 answer
  • Describe some precautions needed to increase the safety of participants in the sports of football.
    7·1 answer
  • I WILL MAKE YOU BRAINLIEST! PLEASE PROVIDE PROOF FROM K12. ASAPHURRY IS ALWAYS WELCOME TO ANSWER MY QUESTIONS SHE IS THE BEST. t
    7·1 answer
  • Which point or points of view could be present in a business letter?
    8·1 answer
  • What factors affect the strength and direction of electrical forces?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!