Electrons are important to the electric current because they are able to move from one atom to another. When an atom loses an electron, it becomes positively charged and when an atom gains an electron, it becomes negatively charged.
Answer:
Explanation:
1. What are the forces acting on the block when it is hanging freely from the spring scale? What is the net force on the block? What are the magnitudes of each of the forces acting on the block? Explain.
When a block is hanging freely, two forces are acting on it = tension force from the spring scale and gravity force on the block itself. The net force is zero as the block is not accelerating. The magnitudes of tension and gravity force are the same but in opposite directions.
2. What are the forces that act on the block when it is placed on the ramp and is held in place by the spring scale? What is the net force acting on the block? Explain. (Assume that the ramps are frictionless surfaces.)
There are three forces acting on the block when it is placed on the ramp and is held in place by the spring scale: as in 1, there are tension and gravity but there is a third force - reaction force from the ramp surface on the block that is perpendicular to the surface. Again the block is not moving so the net force is zero.
3. What is the magnitude of normal force acting on the block when it is resting on the flat surface? How does the normal force change as the angle of the ramp increases? Explain. (Assume that the ramps are frictionless surfaces.)
On flat surface, the normal force is equal to the gravity force of the block i.e. its weight. On a vertical surface, the normal force is equal to zero. For the angle of ramp, θ, the normal force = weight * cos θ.
<span>increasing the number of coils in the armature
</span>
<span />
Answer:
B.)Angular momentum is always conserved
Explanation:
Angular momentum is given by:

where
m is the mass of the object
v is its speed
r is the distance between the object and the centre of its circular trajectory
In absence of external torques, angular momentum is always conserved. That means that for the spinning star, if its radius r decreases (because it shrinks), in order for L (the angular momentum) to be conserved, the speed (v) must increases, therefore the spinning star speeds up.
So, the correct choice is
B.)Angular momentum is always conserved