Answer:
The block has an acceleration of 
Explanation:
By means of Newton's second law it can be determine the acceleration of the block.
(1)
Where
represents the net force, m is the mass and a is the acceleration.
(2)
The forces present in x are
and
(the friction force):

Notice that
subtracts to
since it is at the opposite direction.

The forces present in y balance each other:

Therefore:
(3)
But
and writing (3) in terms of a it is get:

So the block has an acceleration of
.
Answer:
Explanation:
The motion of Mary along the circular path is a centripetal.
As Mary moves from one edge of the circular platform to the other edge, she is covering a distance which is the radius of the circular path at a velocity.
According to the relationship
w = v/r where
w is the angular velocity
r is the radius
v is the linear velocity
Initially, before Mary starts, her linear speed is zero and her angular velocity is also zero. As she move towards the opposite edge, she is covering a distance of radius r. According to the formula, increase in radius will leads to decrease in her angular velocity and vice versa. As Mary starts moving towards the centre of the circular path, her angular velocity increases, at the centre of the platform, her angular velocity is at maximum at this point. As she moves further from the center to the other edge, her angular velocity decreases due to increase in distance covered across the circular path.
Answer:
ρ = 7500 kg/m³
Explanation:
Given that
mass ,m = 12 kg
Displace volume ,V= 1.6 L
We know that
1000 m ³ = 1 L
Therefore V= 0.0016 m ³
When metal piece is fully submerged
We know that
mass = Density x volume

Now by putting the values in the above equation

ρ = 7500 kg/m³
Therefore the density of the metal piece will be 7500 kg/m³.
Horizontal component = (10N) · sin (20°) = 3.42... N (rounded)
Vertical component = (10N) · cos (20°) = 9.39... N (rounded)
Answer:
pressure is equal to the net amount of force acting per unit area. Dimensional Formulae of force is M1L1T-2 and of area is L2. Therefore Pressure's dimension can be obtained by calculating Force by Area. Dimensional formula of pressure difference is M1L-1T-2.