Answer:
18.4 m
Explanation:
(a)
The known variables in this problem are:
u = 1.40 m/s is the initial vertical velocity (we take downward direction as positive direction)
t = 1.8 s is the duration of the fall
a = g = 9.8 m/s^2 is the acceleration due to gravity
(b)
The vertical distance covered by the life preserver is given by
If we substitute all the values listed in part (a), we find
the puck recoils in each case.
larger mass stone gives puck greater recoil, smaller stone, smaller recoil
Answer:
= 925.92 N
≅ 926N
Explanation:
Pressure due to car = pressure due to applied force
12000/18^2 = Force / 5^2
force = 12000 * 25/ 324
= 925.92 N
For equilibrium
Pressure1 = Pressure2
A1F1 = A2F2
12000*pi*(5^2) = F2 ( pi)*(18^2)
so, F2 = Applied force to lift car = 925.92 N
Pascal's principle
Pressure1 = Pressure2
F1/A1 = F2/A2 (F=force and A=area)
A1 =Pi*(0.05)²
A2 =Pi(0.18)²
F2=12000
F1 = 12000*(0.05)² / (0.18)² = 926N
Answer:
because each row increases in atomic mass by a specific number, so anything over five is in the second row.