Answer:
(a) 5.7 s
(b) 39 m/s
Explanation:
(a) u = 18 m/s
At the maximum height, the final velocity of ball is zero. lte teh time taken by the ball to go from 50 m height to maximum height is t.
use first equation of motion.
v = u + g t
0 = 18 - 10 x t
t = 1.8 s
Let the maximum height attained by the ball when it thrown from 50 m height is h'.
Use third equation of motion
v^2 = u^2 + 2 g h'
0 = 18^2 - 2 x 10 x h'
h' = 16.2 m
Total height from the ground H = h + h' = 50 + 16.2 = 76.2 m
Let t' be the time taken by the ball to hit the ground as it falls from maximum height.
use third equation of motion
H = ut + 1/2 x g t'^2
76.2 = 0 + 1/2 x 10 x t'^2
t' = 3.9 s
Total time taken by the ball to hit the ground = T = t + t' = 1.8 + 3.9 = 5.7 s
(b) Let v be the velocity with which the ball strikes the ground.
v^2 = u^2 + 2 g H
v^2 = 0 + 2 x 10 x 76.2
v = 39 m/s
Light travels in waves, and light travels at about 3.0x10^8 m/s. and you call that this the 'speed of light' so your answer possible could be
A. It travels at the speed of light.
I might be wrong so double check.
Answer:
I hypothesis that the motion involving the balls in the experiment were moving to create data.
Explanation:
I hope this helps!
the correct answer is no ;)
Answer:
b. a large elliptical galaxy
Explanation:
In elliptical galaxies the stars are grouped in an elliptical shape, it has a low quantity of gas and dust in comparison to spiral galaxies, and its stars belong to an old population, there is not new stellar formation in it.
The stars orbit in a messy way which made to believe that they form from the merger of galaxies.
They are also really massive (around
solar masses).
The most massive and luminous can be found in the center of cluster of galaxies.