1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ksenya-84 [330]
3 years ago
11

I just need x isolated

Physics
2 answers:
mamaluj [8]3 years ago
7 0

Answer:

x=\frac{-y+\sqrt{y^2+4rt} }{2r}

x=\frac{-y-\sqrt{y^2+4rt} }{2r}

Explanation:

rx+y=\frac{t}{x}\\\\x(rx+y)=(\frac{t}{x})x\\\\rx^2+yx=t\\\\rx^2+yx-t=t-t\\\\rx^2+yx-t=0

Solve using the quadratic formula.

x=\frac{-y+\sqrt{y^2+4rt} }{2r}

x=\frac{-y-\sqrt{y^2+4rt} }{2r}

zepelin [54]3 years ago
4 0

Answer:

x=-y+\sqrt{y^2+4rt/2r

Explanation:

solve using the quadratic equation

You might be interested in
2) A 0.4kg ball moves in horizontal circle of radius 3 m at speed of 100m/s. What
sweet-ann [11.9K]

Answer:

F = 1300 N

Explanation:

F = mv²/R = 0.4(100²)/3 = 1333.3333...

6 0
3 years ago
Kyle is flying a helicopter at 125 m/s on a heading of 325 o . If a wind is blowing at 25 m/s toward a direction of 240.0 o , wh
frosja888 [35]

Answer:

The resultant velocity of the helicopter is \vec v_{H} = \left(89.894\,\frac{m}{s}, -93.348\,\frac{m}{s}\right).

Explanation:

Physically speaking, the resulting velocity of the helicopter (\vec v_{H}), measured in meters per second, is equal to the absolute velocity of the wind (\vec v_{W}), measured in meters per second, plus the velocity of the helicopter relative to wind (\vec v_{H/W}), also call velocity at still air, measured in meters per second. That is:

\vec v_{H} = \vec v_{W}+\vec v_{H/W} (1)

In addition, vectors in rectangular form are defined by the following expression:

\vec v = \|\vec v\| \cdot (\cos \alpha, \sin \alpha) (2)

Where:

\|\vec v\| - Magnitude, measured in meters per second.

\alpha - Direction angle, measured in sexagesimal degrees.

Then, (1) is expanded by applying (2):

\vec v_{H} = \|\vec v_{W}\| \cdot (\cos \alpha_{W},\sin \alpha_{W}) +\|\vec v_{H/W}\| \cdot (\cos \alpha_{H/W},\sin \alpha_{H/W}) (3)

\vec v_{H} = \left(\|\vec v_{W}\|\cdot \cos \alpha_{W}+\|\vec v_{H/W}\|\cdot \cos \alpha_{H/W}, \|\vec v_{W}\|\cdot \sin \alpha_{W}+\|\vec v_{H/W}\|\cdot \sin \alpha_{H/W} \right)

If we know that \|\vec v_{W}\| = 25\,\frac{m}{s}, \|\vec v_{H/W}\| = 125\,\frac{m}{s}, \alpha_{W} = 240^{\circ} and \alpha_{H/W} = 325^{\circ}, then the resulting velocity of the helicopter is:

\vec v_{H} = \left(\left(25\,\frac{m}{s} \right)\cdot \cos 240^{\circ}+\left(125\,\frac{m}{s} \right)\cdot \cos 325^{\circ}, \left(25\,\frac{m}{s} \right)\cdot \sin 240^{\circ}+\left(125\,\frac{m}{s} \right)\cdot \sin 325^{\circ}\right)\vec v_{H} = \left(89.894\,\frac{m}{s}, -93.348\,\frac{m}{s}\right)

The resultant velocity of the helicopter is \vec v_{H} = \left(89.894\,\frac{m}{s}, -93.348\,\frac{m}{s}\right).

8 0
3 years ago
5. The wire in consists of two segments of different diameters but made from the same metal. The current in segment 1 is I1. a.
Volgvan

Answer:

hello your question is incomplete attached below is the complete question

answer :

a) I1 = I2

b) J1 > J2

c) E 1 > E2

d) ( vd1 ) > ( vd2 )

Explanation:

a) The currents in the two segments are the same  i.e. I1 = I2  and this is because the segments are connected in series

b) Comparing the current densities J1 and J2 in the two segments

note : current density ∝ 1 / area

The area of the second segment is > the area of first segment  therefore

J1 > J2

J1 ( current density of first segment )

J2 ( current density of second segment )

c) Comparing the electric field strengths E1 and E2

 note : electric field strength ∝ current density

since current density of first segment is > current density of second segment  and conductivity of the materials are the same hence

E 1 > E2

d) Comparing the drift speeds Vd1 and Vd2

( vd1 ) > ( vd2 )

this because  ; vd ∝ current density

7 0
3 years ago
Globalization is the process of
Delvig [45]

Answer: Globalization is the process of interaction and integration among people, companies, and governments worldwide.

Explanation:

5 0
3 years ago
Read 2 more answers
A light wave has a wavelength of 450 nanometers. What is the frequency of this light?
Zolol [24]

Answer:

Frequency, f=6.67\times 10^{14}\ Hz

Explanation:

Wavelength of a light wave is 450 nm. It is required to find the frequency of this light wave. The speed of light is given by c. So,

c=f\lambda

f is the frequency of this light

f=\dfrac{c}{\lambda}\\\\f=\dfrac{3\times 10^8}{450\times 10^{-9}}\\\\f=6.67\times 10^{14}\ Hz

So, the frequency of this light is 6.67\times 10^{14}\ Hz.

3 0
4 years ago
Other questions:
  • Two conducting parallel plates 5.0 × 10−3 meter apart are charged with a 12-volt potential
    9·1 answer
  • A pet-store supply truck moves at 25.0 m/s north along a highway. inside, a dog moves at 1.75 m/s at an angle of 35.0° east of
    5·1 answer
  • Why electric potential of earth is taken to be zero?
    15·1 answer
  • PLEASE HELP! How much heat is absorbed by 57g iron skillet when its temperature rises from 11°c to 30°C?
    12·1 answer
  • Two capacitors give an equivalent capacitance of 9.42 pF when connected in parallel and an equivalent capacitance of 1.68 pF whe
    10·1 answer
  • An object with total mass mtotal = 16.2 kg is sitting at rest when it explodes into three pieces. One piece with mass m1 = 4.7 k
    12·1 answer
  • Help? 25 points and will give brainliest!
    13·1 answer
  • 2.<br> The inertia of an object depends on its
    12·1 answer
  • A paper airplane is thrown westward at a rate of 6 m/s. The wind is blowing at 8 m/s towards the north. Which of the following d
    15·1 answer
  • I need help with these questions :<br>(see image )​
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!