Answer:
Styrofoam would be the best insulator because it traps the air in small pockets, blocking the flow of heat energy.
Explanation:
Answer:
1.92 J
Explanation:
From the question given above, the following data were obtained:
Mass (m) = 200 Kg
Spring constant (K) = 10⁶ N/m
Workdone =?
Next, we shall determine the force exerted on the spring. This can be obtained as follow:
Mass (m) = 200 Kg
Acceleration due to gravity (g) = 9.8 m/s²
Force (F) =?
F = m × g
F = 200 × 9.8
F = 1960 N
Next we shall determine the extent to which the spring stretches. This can be obtained as follow:
Spring constant (K) = 10⁶ N/m
Force (F) = 1960 N
Extention (e) =?
F = Ke
1960 = 10⁶ × e
Divide both side by 10⁶
e = 1960 / 10⁶
e = 0.00196 m
Finally, we shall determine energy (Workdone) on the spring as follow:
Spring constant (K) = 10⁶ N/m
Extention (e) = 0.00196 m
Energy (E) =?
E = ½Ke²
E = ½ × 10⁶ × (0.00196)²
E = 1.92 J
Therefore, the Workdone on the spring is 1.92 J
This implies that stopping distance and impact force grow as a function of speed. The best ways to improve manoeuvrability and lessen crash severity are to drive at an appropriate pace and to slow down as soon as you spot dangers in front of you.
Keep in mind that stopping distance increases with speed; at 50 mph, it is four times longer than at 25 mph, and at 75 mph, the force of impact is nine times greater.
<h3>What is the impact of speed on kinetic energy ?</h3>
When your car expends or absorbs energy to speed up or slow down, you may feel a pull or a jolt, called impulse. Impulse increases as the energy or force increases, and increases as the duration of the force decreases. You'll feel a harder jolt if you speed up or slow down suddenly.
- Consider: coming to a stop from 60 mph in ten seconds doesn't hurt you or your vehicle because the force of this event is spread out over a long time. But if you hit a wall and come to a stop in just half a second, you'll feel twenty times the impulse, causing severe damage.
Learn more about Kinetic energy here:
brainly.com/question/25959744
#SPJ4
Answer:
d = 44.64 m
Explanation:
Given that,
Net force acting on the car, F = -8750 N
The mass of the car, m = 1250 kg
Initial speed of the car, u = 25 m/s
Final speed, v = 0 (it stops)
The formula for the net force is :
F = ma
a is acceleration of the car

Let d be the breaking distance. It can be calculated using third equation of motion as :

So, the required distance covered by the car is 44.64 m.
The study of motion is called kinematics.