Mechanical energy equals the sum of potential and kinetic energy. During the process, all PE converts into KE, assuming air resistance is neglected. So, the mechanical energy does not change and is equal to the initial potential energy.
ME
=mgh
=0.005 x 9.81 x 3
=0.147J
Answer:
![\boxed{ \bold{ \boxed{ \sf{see \: below}}}}](https://tex.z-dn.net/?f=%20%5Cboxed%7B%20%5Cbold%7B%20%5Cboxed%7B%20%5Csf%7Bsee%20%5C%3A%20below%7D%7D%7D%7D)
Explanation:
MA ( Mechanical Advantage ) is always less than VR ( Velocity Ratio ) because <u>MA</u><u> </u><u>is</u><u> </u><u>reduced</u><u> </u><u>by</u><u> </u><u>friction</u><u> </u><u>but</u><u> </u><u>VR</u><u> </u><u>is</u><u> </u><u>not</u><u> </u><u>affected</u><u> </u><u>by</u><u> </u><u>friction</u><u>.</u>
Hope I helped!
Best regards! :D
Answer:
F₃ = 122.88 N
θ₃ = 20.63°
Explanation:
First we find the components of F₁:
For x-component:
F₁ₓ = F₁ Cos θ₁
F₁ₓ = (50 N) Cos 60°
F₁ₓ = 25 N
For y-component:
F₁y = F₁ Sin θ₁
F₁y = (50 N) Sin 60°
F₁y = 43.3 N
Now, for F₂. As, F₂ acts along x-axis. Therefore, its y-component will be zero and its x-xomponent will be equal to the magnitude of force itself:
F₂ₓ = F₂ = 90 N
F₂y = 0 N
Now, for the resultant force on ball to be zero, the sum of x-components of the forces and the sum of the y-component of the forces must also be equal to zero:
F₁ₓ + F₂ₓ + F₃ₓ = 0 N
25 N + 90 N + F₃ₓ = 0 N
F₃ₓ = - 115 N
for y-components:
F₁y + F₂y + F₃y = 0 N
43.3 N + 0 N + F₃y = 0 N
F₃y = - 43.3 N
Now, the magnitude of F₃ can be found as:
F₃ = √F₃ₓ² + F₃y²
F₃ = √[(- 115 N)² + (- 43.3 N)²]
<u>F₃ = 122.88 N</u>
and the direction is given as:
θ₃ = tan⁻¹(F₃y/F₃ₓ) = tan⁻¹(-43.3 N/-115 N)
<u>θ₃ = 20.63°</u>
It does work or increases thermal energy