Answer:
5.4×10⁶J
Explanation:
1 cal = 4.184 J
1.3×10⁶ cal × (4.184 J/cal) = 5.4×10⁶J
Answer:
18 kg/cm³
Explanation:Density=mass/ volume=450/25=18kg/cm³
Answer:
a) The maximum height the ball will achieve above the launch point is 0.2 m.
b) The minimum velocity with which the ball must be launched is 4.43 m/s or 0.174 in/ms.
Explanation:
a)
For the height reached, we use 3rd equation of motion:
2gh = Vf² - Vo²
Here,
Vo = 3.75 m/s
Vf = 0m/s, since ball stops at the highest point
g = -9.8 m/s² (negative sign for upward motion)
h = maximum height reached by ball
therefore, eqn becomes:
2(-9.8m/s²)(h) = (0 m/s)² - (3.75 m/s²)²
<u>h = 0.2 m</u>
b)
To find out the initial speed to reach the hoop at height of 3.5 m, we again use 3rd eqn. of motion with h= 3.5 m - 2.5m = 1 m (taking launch point as reference), and Vo as unknown:
2(-9.8m/s²)(1 m) = (0 m/s)² - (Vo)²
(Vo)² = 19.6 m²/s²
Vo = √19.6 m²/s²
<u>Vo = 4.43 m/s</u>
Vo = (4.43 m/s)(1 s/1000 ms)(39.37 in/1 m)
<u>Vo = 0.174 in/ms</u>
<u />
Answer: B
Explanation: the wave with the largest amplitude would create ththe loudest sound, and based on the picture provided, I would guess B has the largest amplitude.
The frequency of any repeating event is the number of times it happens in some specified period of time.
The frequency of a wave is the number of cycles, wiggles, compressions etc. that occur in a given time, usually one second.