On a velocity - time graph, if the line crosses the x - axis it depicts that the object has started moving in the opposite direction.
highest energy level to the ground state.
Explanation:
The transition from the highest energy level to the ground state.
An electron has a discrete amount of energy accrued to it in any energy level it belongs to.
Electrons can transition between one energy level or the other.
- When electrons change state, they either release or absorb energy.
- When an atom absorbs energy, they move from their ground to final state which is consistent with the energy of the final state.
- When electrons release energy, they move from excited state to their ground state.
- Electrons will release the greatest amount of energy when they move from the highest energy level to the ground state.
Learn more:
Neil Bohr brainly.com/question/4986277
#learnwithBrainly
1250 J in 5 sec= 250 Joule(s) per second (1250/5 0
250 Joules per second = 250 Watts ( 1J/s = 1 Watt per definition)
250 Watts output = 250/0.65 efficiency = 384 Watts input
1 Horsepower = 732 Watts
Motors 1 Horsepower and under are made in certain step sizes like
3/4 , 1/2 , 1/3, 1/4, 1/16 1/20 of a Horsepower.
3/4 Horsepower is 549 Watts
1/2 Horsepower is 366 Watts
so you need to 3/4 horsepower motor to achieve 1250 J of work in 5 seconds.
1. All the relevant resistors are in series, so the total (or equivalent) resistance is the sum of the resistances of the resistors: 20 Ω + 80 Ω + 50 Ω = 150 Ω [choice A].
2. The ammeter will read the current flowing through this circuit. We can find the ammeter reading using Ohm's law in terms of the electromotive force provided by the battery: I = ℰ/R = (30 V)(150 Ω) = 0.20 A [choice C].
3. The voltmeter will measure the potential drop across the 50 Ω resistor, i.e., the voltage at that resistor. We know from question 2 that the current flowing through the resistor is 0.20 A. So, from Ohm's law, V = IR = (0.20 A)(50 Ω) = 10. V, which will be the voltmeter reading [choice F].
4. Trick question? If the circuit becomes open, then no current will flow. Moreover, even if the voltmeter were kept as element of the circuit, voltmeters generally have a very high resistance (an ideal voltmeter has infinite resistance), so the current moving through the circuit will be negligible if not nil. In any case, the ammeter reading would be 0 A [choice B].