Answer:
Yes, chromosomes are in the nucleus of all cells that have a nucleus.
Explanation:
When an electron passes through the magnetic field of a horseshoe magnet, the electron's direction is changed.
Path of an electron in a magnetic field
The force (F) on wire of length L carrying a current I in a magnetic field of strength B is given by the equation:
F = BIL
But Q = It and since Q = e for an electron and v = L/t you can show that :
Magnetic force on an electron = BIL = B[e/t][vt] = Bev where v is the electron velocity
In a magnetic field the force is always at right angles to the motion of the electron (Fleming's left hand rule) and so the resulting path of the electron is circular.
Therefore :
Magnetic force = Bev = mv2/r = centripetal force
v = [Ber]/m
and so you can see from these equations that as the electron slows down the radius of its orbit decreases.
If the electron enters the field at an angle to the field direction the resulting path of the electron (or indeed any charged particle) will be helical. Such motion occurs above the poles of the Earth where charges particles from the Sun spiral through the Earth's field to produce the aurorae.
To learn more about electron : brainly.com/question/860094
#SPJ4
It shows the atomic number
Answer : The limiting reagent is 
Solution : Given,
Moles of methane = 2.8 moles
Moles of
= 5 moles
Now we have to calculate the limiting and excess reagent.
The balanced chemical reaction is,

From the balanced reaction we conclude that
As, 2 mole of
react with 1 mole of 
So, 5 moles of
react with
moles of 
From this we conclude that,
is an excess reagent because the given moles are greater than the required moles and
is a limiting reagent and it limits the formation of product.
Hence, the limiting reagent is 