Answer:
The answer to your question is Q = 355.64 J
Explanation:
Data
Heat = Q = ?
Temperature 1 = T1 = 20°C
Temperature 2 = T2 = 37°C
mass = m = 5 g
Specific heat = Cp = 4.184 J/g°C
Formula
Q = mCp(T2 - T1)
-Substitution
Q = (5)(4.184)(37 - 20)
-Simplification
Q = (5)(4.184)(17)
-Result
Q = 355.64 J
Answer: Ions may be defined as the element that contains either positive or negative charge over them. Two types of ions are cations and anions. The outermost electrons are involved in the formation of ions.
The atomic number of sulfur is 16. Its outermost electronic configuration is K=2, L= 8, M= 6. The sulfur requres two more electrons to complete its orbit and accquire -2 charge.
Explanation:
Answer:
- last option: none of<u> the above.</u>
Explanation:
Describing a solution as<em> concentrated</em> tells that the solution has a relative large concentration, but it is a qualitative description, not a quantitative one, so this does not tell really how concentrated the solution is. This is, the term concentrated is a kind of vague; it just lets you know that the solution is not very diluted, but, as said initially, that there is a relative large amount (concentration) of solute.
One conclusion, of course, is that <u>the solute is soluble</u>: else the solution were not concentrated.
On the other hand, the terms saturated and <em>supersaturated</em> to define a solution are specific.
A saturated solution has all the solute that certain amount of solvent can contain, at a given temperature. A <u>supersaturated solution has more solute dissolved than the saturated solution</u> at the same temperature; superstaturation is a very unstable condition.
From above, there is no way that you can conclude whether a solution is supersaturated or not from the statement that a solution is concentrated, so the answer is<u> none of the above</u>.
Paleolithic Era
During the Paleolithic Era, early humans used mostly stone tools but at times also used wood or bone tools.
<span>The correct option is: It's solid form is less dense than the liquid form.</span>