Answer:
Q = 28.9 kJ
Explanation:
Given that,
Mass of Aluminium, m = 460 g
Initial temperature, 
Final temperature, 
We know that the specific heat of Aluminium is 0.9 J/g°C. The heat required to raise the temperature is given by :

So, 28.9 kJ of heat is required to raise the temperature.
Answer:
The answer to your question is C₂HO₃
Explanation:
Data
Hydrogen = 3.25%
Carbon = 19.36%
Oxygen = 77.39%
Process
1.- Write the percent as grams
Hydrogen = 3.25 g
Carbon = 19.36 g
Oxygen = 77.39 g
2.- Convert the grams to moles
1 g of H ----------------- 1 mol
3,25 g of H ------------- x
x = (3.25 x 1) / 1
x = 3.25 moles
12 g of C ---------------- 1 mol
19.36 g of C ---------- x
x = (19.36 x 1) / 12
x = 1.61 moles
16g of O --------------- 1 mol
77.39 g of O --------- x
x = (77.39 x 1)/16
x = 4.83
3.- Divide by the lowest number of moles
Carbon = 3.25/1.61 = 2
Hydrogen = 1.61/1.61 = 1
Oxygen = 4.83/1.61 = 3
4.- Write the empirical formula
C₂HO₃
Inertia depends on the mass of an object.
Answer : The radii of the two ions Cl⁻ ion and Na⁺ ion is, 181 and 102 pm respectively.
Explanation :
As we are given that the Na⁺ radius is 56.4% of the Cl⁻ radius.
Let us assume that the radius of Cl⁻ be, (x) pm
So, the radius of Na⁺ = 
In the crystal structure of NaCl, 2 Cl⁻ ions present at the corner and 1 Na⁺ ion present at the edge of lattice.
Thus, the edge length is equal to the sum of 2 radius of Cl⁻ ion and 2 radius of Na⁺ ion.
Given:
Distance between Na⁺ nuclei = 566 pm
Thus, the relation will be:





The radius of Cl⁻ ion = (x) pm = 181 pm
The radius of Na⁺ ion = (0.564x) pm = (0.564 × 181) pm =102.084 pm ≈ 102 pm
Thus, the radii of the two ions Cl⁻ ion and Na⁺ ion is, 181 and 102 pm respectively.