Answer:
Suppose you were standing in the dark room with a bare light bulb behind you. You hold a ball in front of you, and you can see all of the lit half of the ball, which looks like a circle.
you rotate 90° to your left, and see the left side of the circle lit while the right side is dark. Half the ball is still lit up, but you can see only part of the lit area. As you continue to rotate, you see a different amount of the ball. In fact, you would see the shape change from a full circle to a crescent shape to a backwards crescent shape and then back to a full circle.
Explanation:
I think this is it tell me if i'm wrong
The better era tbh.......
Will be destroyed unless helped.
Answer:
i = 2.79
Explanation:
The excersise talks about the colligative property, freezing point depression.
Formula to calculate the freezing point of a solution is:
Freezing point of pure solvent - Freezing point of solution = m . Kf . i
Let's replace data given. (i = Van't Hoff factor, numbers of ions dissolved in solution)
48.1°C - 44°C = 0.15 m . 9.78°C/m . i
4.1°C / (0.15 m . 9.78°C/m) = i
i = 2.79
In this case, numbers of ions dissolved can decrease the freezing point of a solution, which is always lower than pure solvent.
Chemical equilibrium<span> is the state in which both reactants and products are present in concentrations which have no further tendency to change with time.
</span><span>Or, we can say that in chemical equilibrium the ratio between the concentration of the reactants and the products is constant.</span><span>
Chemical equilibrium is a result state when </span><span>the forward reaction proceeds at the same rate as the reverse reaction.
</span><span>Different reactions have different equilibrium.</span>