Potassium carbonate, K 2CO 3, sodium iodide, NaI, potassium bromide, KBr, methanol, CH 3OH, and ammonium chloride, NH 4Cl, are s
slava [35]
Answer:
Potassium carbonate (K₂CO₃)
Explanation:
The compounds dissociate into ions in water, as follows:
K₂CO₃ → 2 K⁺ + CO₃⁻ ⇒ 3 dissolved particles per mole
NaI → Na⁺ + I⁻ ⇒ 2 dissolved particles per mole
KBr → K⁺ + Br⁻ ⇒ 2 dissolved particles per mole
CH₃OH → CH₃O⁻ + H⁺ ⇒ 2 dissolved particles per mole
NH₄Cl → NH₄⁺ + Cl⁻ ⇒ 2 dissolved particles per mole
Therefore, the largest number of dissolved particles per mole of dissolved solute is produced by potassium carbonate (K₂CO₃).
1374.75 is the concentration in milligrams per ml of a solution containing 23.5 meq sodium chloride per milliliter.
Concentration in chemistry is calculated by dividing a constituent's abundance by the mixture's total volume.
It is calculated in mg/ml.
The unit of measurement frequently used for electrolytes is the milliequivalent (mEq). This value compares an element's chemical activity, or combining power, to that of 1 mg of hydrogen.
Formula for calculating concentration in mg/ml is
Conc. (mg/ml) = M(eq) /ml × Molecular weight / Valency
Given
M(eq) NaCl/ ml = 23.5
Molecular weight pf NaCl = 58.5 g/mol
Valency = 1
Putting the values into the formula
Conc. (mg/ml) = 23.5 ×58.5/1
= 1374.75 mg/ml
Hence, 1374.75 is the concentration in milligrams per ml of a solution containing 23.5 meq sodium chloride per milliliter.
Learn more about Concentration here brainly.com/question/14500335
#SPJ4
The answer is: D the box will NOT move or change. Hope this helps!
We determine the limiting reactant by using the moles present in the equation and the actual moles.
According to equation, ratio of Fe₂O₃ : Al = 1 : 2
Actual moles of Fe₂O₃ = 187.3 / (56 x 2 + 16 x 3)
= 1.17
Actual moles of Al = 94.51 / 27
= 3.5
Fe₂O₃ is limiting. Fe₂O₃ required:
(moles Al)/2 = 3.5/2 = 1.75
Moles to be added = 1.75 - 1.17
= 0.58
Mass to be added = moles x Mr
= 0.58 x (56 x 2 + 16 x 3)
= 92.8 grams
A physical change does not change the identity of the substance but the chemical change does.
Example
If you tear or shred a piece of paper it is still paper, but if you pour chemicals on it it will probably change to something else.