D) The speed of a wave slows as it travels at different speed in different media.
To determine the diameter of the earth in metres first multiply the original value by 2.
6378 X 2 = 12 756 km.
Then convert km - m
1 km = 1000 m
12 756 km = ? m
12 756 • 1000 = 12 756 000 = 12 756 000 m or 1.2756 X 10 ^ 7 m
The final solution for the diameter is 1.2756 X 10 ^ 7 m.
what is the final speed of the incoming ball if it is much more massive than the stationary ball? express your answer using two significant figures. v1 = 200 m / s submitprevious answers correct
Perfectly elastic collisions means that both mechanical energy and
momentum are conserved.
Therefore, for this case, we have the equation to find the final velocity of the incoming ball is given by
v1f = ((m1-m2) / (m1 + m2)) v1i
where,
v1i: initial speed of ball 1.
v1f: final speed of ball 1.
m1: mass of the ball 1
m2: mass of the ball 2
Since the mass of the ball 1 is much larger than the mass of the ball 2 m1 >> m2, then rewriting the equation:
v1f = ((m1) / (m1) v1i
v1f = v1i
v1f = 200 m / s
answer
200 m / s
part b part complete what is the final direction of the incoming ball with respect to the initial direction if it is much more massive than the stationary ball? forward submitprevious answers correct
Using the equation of part a, we can include in it the directions:
v1fx = ((m1-m2) / (m1 + m2)) v1ix
v1i: initial velocity of ball 1 in the direction of the x-axis
v1f: final speed of ball 1 in the direction of the x-axis
like m1 >> m2 then
v1fx = v1ix
v1fx = 200 m / s (positive x direction)
So it is concluded that the ball 1 continues forward.
answer:
forward
part c part complete what is the final speed of the stationary ball if the incoming ball is much more massive than the stationary ball ?.
The shock is perfectly elastic. For this case, we have that the equation to find the final velocity of the stationary ball is given by
v2f = ((2m1) / (m1 + m2)) v1i
where,
v1i: initial speed of ball 1.
v2f: final speed of ball 2.
m1: mass of the ball 1
m2: mass of the ball 2
Then, as we know that m1 >> m2 then
v2f = ((2m1) / (m1) v1i
v2f = 2 * v1i
v2f = 2 * (200 m / s)
v2f = 400 m / s
answer
400m / s
Answer:
<u>Option-(A): </u>A new moon is quite near the Sun in the sky.
Explanation:
- While the position of the new moon inside our sky has such an orientation that we are not able to see or observe the actual position and shape of the new moon.
- As the path or revolution is much more elliptical then we can imagine, for the moon there are certain position of motion inside the celestial space that for some times it looks for different then the other and such position generates the concept of a new moon.