Position is measured in meters (m), so it is a base quantity.
<h3>What is base quantity?</h3>
A base or fundamental quantity is a physical quantity, in which other quantities are derived from.
Example of fundamental quantities;
- Mass
- Length (position)
- Time
- Temperature
- Amount of substance
<h3>What is a derived quantity?</h3>
Derived quantities are those quantities obtained or expressed from fundamental quantities.
Example of derived quantities;
- Speed
- Acceleration
- Volume
- Area
- Density, etc
Thus, we can conclude that position measured in meters (m) is a base quantity.
Learn more about base quantities here: brainly.com/question/14480063
#SPJ1
The energy from the light is transferred to the material, causing it to vibrate and absorb the light.
What is energy?
In physics, energy is the quantitative quality that is transmitted to the a body or a physical system, and is discernible in the work performed as well as in the form of light and heat. The law of conservation states that although energy can change its form, it cannot be created or destroyed. Energy is indeed a conserved quantity. The International System of Units' (SI's) joule is the measurement unit for energy (J). A moving object's kinetic energy, a solid object's elastic energy, chemical energy caused by chemical reactions, and the potential energy that an object stores (for instance because of its position inside a field) are examples of common forms of energy.
When light falls upon a material that has a natural frequency equal to the frequency of the light, the light will be absorbed by the material. This is due to resonance, which occurs when the frequency of the light matches the natural frequency of the material. The energy from the light is transferred to the material, causing it to vibrate and absorb the light.
To learn more about energy
brainly.com/question/582060
#SPJ4
Solution: From the given question, we shall find the vector quantity among the
(A) Time , (B) Velocity, (C) Distance , (D) Speed
Concept: <u>Vector Quantity: </u>All those physical quantities which have magnitude as well as specific directions, are called Vector Quantities.
Here, Time, Distance and Speed have only magnitude but have no directions so they will be scalar quantities.
Now, <u>Velocity:</u> It is defined as the change in displacement per unit time. Since the change in the displacement will be in particular direction only. Hence, velocity will be the vector quantity.
Hence, the option (B) Velocity will be the correct option.
To solve this problem, we will get f and then we will use it to calculate the power.
So, for this farsighted person,
do = 25 cm and di = -80
Therefore:
1/f = (1/25) + (1/-80) = 0.00275 = 0.275 m
Power = 1/f = 1/0.275 = +3.6363 Diopeters.
This means that the lens is converging.
It’s hard to perfectly measure the distance something travels, as well as the exact time it takes, making the results have some variation.