Answer: they have the same magnitude.
Explanation:
normal force = mg
weight = mg
Answer: 90 kgm/s
Explanation:
The momentum (linear momentum)
is given by the following equation:
Where:
is the mass of the skater
is the velocity
In this situation the skater has two values of momentum:
Initial momentum: 
Final momentum: 
Where:


So, if we want to calculate the difference in the magnitude of the skater's momentum, we have to write the following equation(assuming the mass of the skater remains constant):
Finally:
Answer:
W = 2352 J
Explanation:
Given that:
- mass of the bucket, M = 10 kg
- velocity of pulling the bucket, v = 3

- height of the platform, h = 30 m
- rate of loss of water-mass, m =

Here, according to the given situation the bucket moves at the rate,

The mass varies with the time as,

Consider the time interval between t and t + ∆t. During this time the bucket moves a distance
∆x = 3∆t meters
So, during this interval change in work done,
∆W = m.g∆x
<u>For work calculation:</u>
![W=\int_{0}^{10} [(10-0.4t).g\times 3] dt](https://tex.z-dn.net/?f=W%3D%5Cint_%7B0%7D%5E%7B10%7D%20%5B%2810-0.4t%29.g%5Ctimes%203%5D%20dt)
![W= 3\times 9.8\times [10t-\frac{0.4t^{2}}{2}]^{10}_{0}](https://tex.z-dn.net/?f=W%3D%203%5Ctimes%209.8%5Ctimes%20%5B10t-%5Cfrac%7B0.4t%5E%7B2%7D%7D%7B2%7D%5D%5E%7B10%7D_%7B0%7D)

<span>D is at rest at the top of a 2 m high slope. The sled has a mass of 45 kg. The sled's potential energy is J?
</span>Answer: The sled's potential energy is 882 Joules
Answer:
law of Action and Reaction F = 2250 N
Explanation:
The tractor and the trailer are two bodies that interact, therefore, by the law of Action and Reaction, the force that one applies on the other is equal to the force that the second body (trailer) applies on the first (tractor), but with opposite direction
F = 2250 N
directed from trailer to tractor