If it is completely elastic, you can calculate the velocity of the second ball from the kinetic energy
<span>v1 = velocity of #1 </span>
<span>v1' = velocity of #1 after collision </span>
<span>v2' = velocity of #2 after collision. </span>
<span>kinetic energy: v1^2 = v1' ^2 + v2' ^2 (1/2 and m cancel out) </span>
<span>5^2 = 4.35^2 + v2' ^2 </span>
<span>v2 = 2.46 m/s <--- ANSWER</span>
Velocity. Net force causes acceleration and acceleration causes a change in direction and/or magnitude of velocity
Answer:
A kilowatt (kW) is a unit of power.
Explanation:
The power of an object is given by :

Here,
E is the energy required
t is time
The SI unit of power is Watts and the SI unit of energy is Joule. the commercial unit of energy is kilowatt per hour.
Option (1) : A kilojoule (kJ) is a unit of power is incorrect.
Option (2) : A gigawatt (GW) is a unit of energy is incorrect.
Option (3) : A watt (W) is a unit of energy is incorrect.
Option (4) : A kilowatt x hour per year (kWh/yr) is a unit of energy is incorrect.
Option (4) : A kilowatt (kW) is a unit of power is correct.
Hence, the correct option is (d).
Answer:
The torque about the origin is 
Explanation:
Torque
is the cross product between force
and vector position
respect a fixed point (in our case the origin):

There are multiple ways to calculate a cross product but we're going to use most common method, finding the determinant of the matrix:
![\overrightarrow{r}\times\overrightarrow{F} =-\left[\begin{array}{ccc} \hat{i} & \hat{j} & \hat{k}\\ F1_{x} & F1_{y} & F1_{z}\\ r_{x} & r_{y} & r_{z}\end{array}\right]](https://tex.z-dn.net/?f=%20%5Coverrightarrow%7Br%7D%5Ctimes%5Coverrightarrow%7BF%7D%20%3D-%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%20%5Chat%7Bi%7D%20%26%20%5Chat%7Bj%7D%20%26%20%5Chat%7Bk%7D%5C%5C%20F1_%7Bx%7D%20%26%20F1_%7By%7D%20%26%20F1_%7Bz%7D%5C%5C%20r_%7Bx%7D%20%26%20r_%7By%7D%20%26%20r_%7Bz%7D%5Cend%7Barray%7D%5Cright%5D%20)


