Answer:
2.06 m/s
Explanation:
From the law of conservation of linear momentum, the sum of momentum before and after collision are equal. Considering this case where we have frictionless surface, no momentum is lost in the process.
Momentum before collision
Momentum is given by p=mv where m and v represent mass. The initial sum of momentum will be 9v+(27*0.5)=9v+13.5
Momentum after collision
The momentum after collision will be given by (9+27)*0.9=32.4
Relating the two then 9v+13.5=32.4
9v=18.5
V=2.055555555555555555555555555555555555555 m/s
Rounded off, v is approximately 2.06 m/s
Answer:
B)a tool to drop temperatures, mercury, an electric current, and a tool to measure resistance
Answer:
Torque,
Explanation:
Given that,
The loop is positioned at an angle of 30 degrees.
Current in the loop, I = 0.5 A
The magnitude of the magnetic field is 0.300 T, B = 0.3 T
We need to find the net torque about the vertical axis of the current loop due to the interaction of the current with the magnetic field. We know that the torque is given by :

Let us assume that, 
is the angle between normal and the magnetic field, 
Torque is given by :

So, the net torque about the vertical axis is
. Hence, this is the required solution.
Answer:
All I know is that first you're Beginner second you're Ambitious and third you're Virtuoso
Explanation:
Answer:
The no. of revolutions does the tub turn while it is in motion is = 52.51 revolutions
Explanation:
Given data
= 0
= 5 
Time taken = 7 sec
(1). The angular acceleration is given by



We know that from the equation of motion


-------- (1)
(2). The angular acceleration is given by


- 0.357 
We know that from the equation of motion


= 35.01 rev ------- (2)
Total no of revolution made by the machine is

17.5 + 35.01
52.51 rev
Therefore the no. of revolutions does the tub turn while it is in motion is = 52.51 rev