Answer:
False
Explanation:
Please see the attached file
To solve this problem it is necessary to apply the concepts given in the kinematic equations of movement description.
From the perspective of angular movement, we find the relationship with the tangential movement of velocity through

Where,
Angular velocity
v = Lineal Velocity
R = Radius
At the same time we know that the acceleration is given as the change of speed in a fraction of the time, that is

Where
Angular acceleration
Angular velocity
t = Time
Our values are




Replacing at the previous equation we have that the angular velocity is



Therefore the angular speed of a point on the outer edge of the tires is 66.67rad/s
At the same time the angular acceleration would be



Therefore the angular acceleration of a point on the outer edge of the tires is 
Answer:
The work done by the gravel to stop the truck is 520.44 kJ
Explanation:
<u>Step 1</u>: Data given
Mass of the truck = 3047.8 kg
The ramp has an angle of 9.5 °
Velocity of the truck = 20.68 m/s
distance = 26.6 meters
<u>Step 2:</u> Calculate initial kinetic energy
sin 9.5° = 0.165
h = ℓ*sin 9.5° = 26.6*0.165= 4.39 m
Ek = 1/2m*Vo² = 1/2*3047.8*20.68² = 651714.7 Joule = 651.7 kJ = initial kinetic energy
<u>Step 3: </u>Calculate potential energy
Epot = U = m*g*h = 3047.8*9.81*4.39 = 131256.25 Joule = 131.26 kJ
<u>Step 4:</u> What work is done by the truck on the gravel?
Frictional energy Ef = 651.7 kJ - 131.26 kJ = 520.44 kJ
Answer:
C
Explanation:
Generally, the speed of light slows down when passing through a medium that is not a vacuum. This is not always the case, but I will be ignoring the rare/exotic exceptions. Light has a harder time traveling through solids and liquids than it does with gases.
solution:
We know v0 = 0, a = 9.8, t = 4.0. We need to solve for v
so,
we use the equation:
v = v0 + at
v = 0 + 9.8*4.0
v = 39.2 m/s
Now we just need to solve for d, so we use the equation:
d = v0t + 1/2*a*t^2
d = 0*4.0 + 1/2*9.8*4.0^2
d = 78.4 m