Answer:

Explanation:
The electric field equation of a electromagnetic wave is given by:
(1)
- E(max) is the maximun value of E, it means the amplitude of the wave.
- k is the wave number
- ω is the angular frequency
We know that the wave length is λ = 700 nm and the peak electric field magnitude of 3.5 V/m, this value is correspond a E(max).
By definition:
And the relation between λ and f is:




The angular frequency equation is:


![\omega=2.69*10^{15} [rad/s]](https://tex.z-dn.net/?f=%5Comega%3D2.69%2A10%5E%7B15%7D%20%5Brad%2Fs%5D)
Therefore, the E equation, suing (1), will be:
(2)
For the magnetic field we have the next equation:
(3)
It is the same as E. Here we just need to find B(max).
We can use this equation:



Putting this in (3), finally we will have:
(4)
I hope it helps you!
Answer:
Acceleration of the second particle at that moment is given as

Explanation:
As we know that both cars are connected by same spring
So on this system of two cars there is no external force
So we will have

now we have



now we have

so we have

Answer:
x = 76.5 m
Explanation:
Let's use Newton's second law at the point of contact between the wheel and the floor.
fr = m a
fr = miy N
N-W = 0
N = W
μ mg = m a
a = miu g
a = 0.600 9.8
a = 5.88 m / s²
Having the acceleration we can use the kinematic relationships to find the distance
² = v₀² + 2 a x
= 0
x = -v₀² / 2 a
Acceleration opposes the movement by which negative
x = - 30²/2 (-5.88)
x = 76.5 m