Answer:
23. 4375 m
Explanation:
There are two parts of the rocket's motion
1 ) accelerating (assume it goes upto h1 height )
using motion equations upwards

Lets find the velocity after 2.5 seconds (V1)
V = U +at
V1 = 0 +5*2.5 = 12.5 m/s
2) motion under gravity (assume it goes upto h2 height )
now there no acceleration from the rocket. it is now subjected to the gravity
using motion equations upwards (assuming g= 10m/s² downwards)
V²= U² +2as
0 = 12.5²+2*(-10)*h2
h2 = 7.8125 m
maximum height = h1 + h2
= 15.625 + 7.8125
= 23. 4375 m
<span>textbook
track shoes
</span><span>basketball</span>
There are many factors that determine if an aircraft can operate from a given airport. Of course the availability of certain services, such as fuel, access to air stairs and maintenance are all necessary. But before considering anything else, one must determine if the plane can physically land at an airport, and equally as important, take off.
What is the minimum runway length that will serve?
Looking at aerial views of runways can lead some to the assumption that they are all uniform, big and appropriate for any plane to land. This couldn’t be further from the truth.
A given aircraft type has its own individual set of requirements in regards to these dimensions. The classic 150’ wide runway that can handle a wide-body plane for a large group charter flight isn’t a guarantee at every airport. Knowing the width of available runways is important for a variety of reasons including runway illusion and crosswind condition.
Runways also have different approach categories based on width, and have universal threshold markings that indicate the actual width.
To learn more about runway
brainly.com/question/11553726
#SPJ4