Use kinematic equations to solve:
1) yf = yo + vo*t + 1/2at²
yf = final height
yo = initial height
vo = initial velocity
a = acceleration
t = time
yf - yo = vo*t + 1/2at²
yf - yo = h
vo = 0
Thus,
h = 1/2at²
h = 1/2(9.8)(12)² = 705.6 m
2) vf = vo + at
vo = 0
Thus,
vf = at
vf = (9.8)(12) = 117.6 m/s
Differentiation in its simplest of terms means breaking something into small parts. On the other hand, integration is taking those really small parts and gluing them in the right order. In short, these terms are the direct opposite or inverses of each other. The term which can tell you how fast you are going at a moment in time at ones current location is called a derivative. The term on the other hand, which can tell you how far you have travelled if you have been keeping track of your location and your time is what an integral is referred to. It is like differentiation only needs knowledge on the local neighbourhood while integration will need the knowledge on a global knowledge.
Answer:
0.52 Nm
Explanation:
A = 0.12 m^2, N = 200, i = 0.5 A, B = 0.050 T
Angle between the plane of loop and magnetic field = 30 Degree
Angle between the normal of loop and the magnetic field = 90 - 30 = 60 degree
θ = 60°
Torque = N i A B Sinθ
Torque = 200 x 0.5 x 0.12 x 0.050 x Sin 60
Torque = 0.52 Nm
Answer:
hi there!
the correct answer to this question is: 6.67 mph
Explanation:
you convert minutes to hours
10 miles * 60 mins / 90 mins
Since my givens are x = .550m [Vsub0] = unknown
[Asubx] = =9.80
[Vsubx]^2 = [Vsub0x]^2 + 2[Asubx] * (X-[Xsub0]
[Vsubx]^2 = [Vsub0x]^2 + 2[Asubx] * (X-[Xsub0])
Vsubx is the final velocity, which at the max height is 0, and Xsub0 is just 0 as that's where it starts so I just plug the rest in
0^2 = [Vsub0x]^2 + 2[-9.80]*(.550)
0 = [Vsub0x]^2 -10.78
10.78 = [Vsub0x]^2
Sqrt(10.78) = 3.28 m/s