1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marta [7]
3 years ago
7

the kinetic energy of a bowling ball is 25 (kg-m^2/sec^2). if the mass is 2 kg, the what is the speed of the bowling ball

Physics
1 answer:
ollegr [7]3 years ago
8 0
K=0.5m×u×u
25=0.5×u×u
u=5m/s
You might be interested in
Having landed on a newly discovered planet, an astronaut sets up a simple pendulum of length 1.38 m and finds that it makes 441
Tasya [4]
The period of a simple pendulum is given by:
T=2 \pi  \sqrt{ \frac{L}{g} }
where L is the pendulum length, and g is the gravitational acceleration of the planet. Re-arranging the formula, we get:
g= \frac{4 \pi^2}{T^2}L (1)

We already know the length of the pendulum, L=1.38 m, however we need to find its period of oscillation.

We know it makes N=441 oscillations in t=1090 s, therefore its frequency is
f= \frac{N}{t}= \frac{441}{1090 s}=0.40 Hz
And its period is the reciprocal of its frequency:
T= \frac{1}{f}= \frac{1}{0.40 Hz}=2.47 s

So now we can use eq.(1) to find the gravitational acceleration of the planet:
g= \frac{4 \pi^2}{T^2}L =  \frac{4 \pi^2}{(2.47 s)^2} (1.38 m) =8.92 m/s^2
3 0
3 years ago
What does the diagram represent?
solong [7]

Answer:

Atoms in a element on the periodic table I dont know which one tho so try google that sorry I am not much of a help

Explanation:

4 0
3 years ago
A body with the inertial
Andrews [41]

Answer:

Explanation:

Hi there,

To get started, recall the kinematic equations from either a textbook, equation sheet, etc. Kinematic equations are used when acceleration is <em>constant,</em> as stated in the prompt.

Best way to use kinematic equations is to see which variable you are looking for, then which variable is unknown to you and is not needed for that equation.

a) average velocity

Takes the form of:

v_a_v_g=\frac{d_t_o_t_a_l}{t}=\frac{v+v_0}{2} this is the literal definition of average velocity; initial plus final divided by 2.

We know total displacement and total time elapsed, so we will use the middle form of the equation:

v_a_v_g=\frac{1640m}{40s}=41 \ m/s

b) the final velocity

We can still use the average velocity formula, as the other two equations that include final velocity have acceleration variable which is unknown as of now.

Solve for final velocity:

v=(2v_a_v_g)-v_o = 2(41 \ m/s) - (8 m/s) = 74 m/s\\ this makes sense, since a velocity later in time is higher than a velocity earlier in time. It is increasing with increasing time because of acceleration.

c) the acceleration

There are two equations that can be used to solve this, but we will use the less time-consuming one, but both produce same answer:

a = \frac{v-v_0}{t_t_o_t_a_l} = \frac{(74-8)m/s}{40s} =1.65 m/s^{2}

Notice, change in velocity over change in time, and acceleration is constant. When acceleration is constant, it models a linear function, and acc. is just slope!

Study well and persevere. If you liked this solution, hit Thanks or give a rating!

thanks,

3 0
3 years ago
Doubly ionized lithium Li2+ (Z = 3) and triply ionized beryllium Be3+ (Z = 4) each emit a line spectrum. For a certain series of
EleoNora [17]

Answer:

tex]\lambda_{Be}[/tex] = 22.78 nm

Explanation:

Bohr's model for the hydrogen atom has been used by other atoms with a single electric charge by changing the number of charges by the charge of the new atom (atomic number)

      E_{n}= k e² / 2a₀ (1 /n²)

      ao = h'² / k m e²               h' = h/2πi

For another atom with a single electron in the last layer

      a₀ ’= h’² / k m (Ze)²  

      a₀ ’= a₀ / Z²

Therefore, when replacing in the equation

      E_{n} = - Z²  Eo/n²

     E₀ = 13,606 eV

The transition occurs when the electron stops from one level to another

         E_{n} -  E_{m} = Z² E₀ (1 / n² - 1 / m²) = Z² ΔE

Let's relate this expression to the wavelength

       c = λ f

      E = h f

      E = h c /λ

      h c / λ = Z² ΔE

     λ = 1 / Z² (hc / ΔE)

     λ = 1 / Z² λ_hydrogen

Let's apply this last equation to our case

Lithium Z = 3

     E_{n} = - 9 Eo / n²

     

      40.5 10-9 = 1/9 λ_hydrogen

Beryllium Z = 4

      λ = 1/16 λ_hydrogen

Let's write our two equations is and solve

     40.5 10-9 = 1/9 λ_hydrogen

    tex]\lambda_{Be}[/tex] = 1/ 16 λ_hydrogen

      40.5 10⁻⁹ = 1/9 (16 \lambda_{Be} )

    tex]\lambda_{Be}[/tex] = 40.5 9/16

  tex]\lambda_{Be}[/tex] = 22.78 nm

6 0
3 years ago
Two pans of water are on different burners of a stove. One pan of water is boiling vigorously, while the other is boiling gently
vichka [17]

Answer:

The correct answer is C.

Explanation:

3 0
3 years ago
Other questions:
  • Two college students are sliding down a hill on excellent sleds so you can ignore friction. One has a mass of 85 kg and one has
    14·1 answer
  • A boulder on top of a cliff has a potential energy of 12400J. How high above is the boulder?
    13·1 answer
  • Apply the kinetic theory to describe the motion of particles in a homogenous mixture of sugar and water as it is boiled.
    12·2 answers
  • A spacecraft built in the shape of a sphere moves past an observer on the Earth with a speed of 0.500c. What shape does the obse
    13·1 answer
  • If the archerfish spits its water 30 degrees from the horizontal aiming at an insect 1.2 m above the surface of the water, how f
    12·1 answer
  • In which example would the most transfer of energy take place from Mechanical energy to Thermal (heat) energy?
    15·1 answer
  • Which diagram best represents the gravitational forces, F, be-<br> tween a satellite, S, and Earth?
    9·1 answer
  • A car starts from rest and accelerates to a speed of 30 m/s in a time of
    6·1 answer
  • Convert<br>Convert 5 km into cm​
    13·2 answers
  • How does the long shape of submarines and torpedoes reduce the dragthey feel when moving under water?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!