<u>Answer:</u> The equilibrium constant for the given reaction is 0.8
<u>Explanation:</u>
Equilibrium constant is defined as the ratio of concentration of the products raised to the power its stoichiometric coefficients to the concentration of reactants raised to power its stoichiometric coefficient. It is represented as 
For the general equation:

The equilibrium constant is represented as:
![K_c=\frac{[C]^c[D]^d}{[A]^a[B]^b}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BC%5D%5Ec%5BD%5D%5Ed%7D%7B%5BA%5D%5Ea%5BB%5D%5Eb%7D)
For the given chemical equation:

for this equation is given by:
![K_c=\frac{[H_2O][CO]}{[H_2][CO_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BH_2O%5D%5BCO%5D%7D%7B%5BH_2%5D%5BCO_2%5D%7D)
Concentration at equilibrium of

Putting values in above equation, we get:

Hence, the equilibrium constant for the given chemical reaction is 0.8
Answer:
The reverse of answer B
Explanation:
In a heterogeneous mixture the phases are clearly seen distinguished but a uniform single phase is seen in a homogeneous mixture
Answer:
3.955*10^48
Explanation:
1 mole of a substance gives 6.02*10^23/6.57*10^24 will give x then cross multiply the answer. is 3.955*10^48
There are 2 molecules indicated
A.) Most reactive non-metals