<span>When an electron, which is negatively charged, moves towards an electronegative atom, the electronegative atom pulls in the electron. This causes the electronegative atom to be reduced. This entire process also releases energy.</span>
A force of attraction that
holds atom together
When atoms react they form a
chemical bond which is defined as a force of attraction that holds atom
together. A force of attraction is defined as a kind of force that draws two or
more objects together regardless of distance. There are two major categories of
forces of attraction, one is intramolecular and intermolecular. Intramolecular forces
is the presence of forces in atoms internally. While intermolecular is the
force by which the force that is existent in two or more elements.
There are things called "Reactants" and "Products" All chemical equations look something like "A + B →C (+ D...)," in which each letter variable is an element or a molecule (a collection of atoms held together by chemical bonds). The arrow represents the reaction or change taking place. Some equations may have a double-headed arrow (↔), which indicates that the reaction can proceed either forward or backward. When a compound has been written out, you must identify the elements and know their chemical symbols. The first element written is “first name” of the compound. Use the periodic table to find the chemical symbol for the element. So here is an example: Dinitrogen hexafluoride. The first element is nitrogen and the chemical symbol for nitrogen is N. To know the numbers of atoms that are present for each element you can just look at the prefix from the element For example: Dinitrogen has a the prefix “di-“ which means 2; therefore, there are 2 atoms of nitrogen present.
Write dinitrogen as N2.
Now for the second element or "last name" of the compound whatever will follow the first element so like; Dinitrogen hexafluoride. The second element is fluorine. Simply replace the “ide” ending with the actual element name. The chemical symbol for fluorine is F.
But the more you practice with, the easier it will be to decipher chemical formulas in the future and learn the language of chemistry.
Sulfur dioxide: SO2
Carbon tetrabromide: CBr4
Diphosphorus pentoxide: P2O5 ← That is one of the examples I'll give you.
have a gooooood daaaaayy
The number of calories that are required to change the temperature of 2.18 g of water from 15.3 c to 69.5 c is <u>118.16 cal</u>
<u><em> calculation</em></u>
- Heat in calories = MCΔ T where,
- M(mass)= 2.18 g
- C(specific heat capacity)= 1.00 cal/g/c
- ΔT( change in temperature)= 69.5- 15.3 =54.2 c
heat is therefore= 2.18 g x 1.00 cal/g/c x 54.2 c=118.16 cal
I think it is trace evidence since it is really small and hard to find.