Answer:
n₁ = 1.0× 10⁻⁴ mol
Explanation:
Given data:
Initial volume of balloon = 230 mL
Initial number of moles of He =?
Final number of moles of He = 3.8 × 10⁻⁴ mol
Final volume of balloon = 860 mL
Solution:
The given problem will be solve through Avogadro law,
"Number of moles of gas and volume are directly proportional to each other at constant temperature and constant pressure"
Mathematical relationship:
V₁/n₁ = V₂/n₂
No we will put the values.
230 mL /n₁ = 860 mL/ 3.8 × 10⁻⁴ mol
n₁ = 230 mL× 3.8 × 10⁻⁴ mol/ 860 mL
n₁ = 874 × 10⁻⁴ mol. mL / 860 mL
n₁ = 1.0× 10⁻⁴ mol
Freezing point depression depends of the number of particles of the solute in the solution.
1)Pure water have highest freezing point. All other solutions with given solutes will have lower temperatures.
2) The more particles of the solute in the solution the lower freezing point is going to be.
<span>b. 1.0 m NaCl ( dissociates and give 2 mol ions (1 mol Na⁺ and 1 mol Cl⁻))
c. 1.0 m K3PO4 (</span>dissociates and give 4 mol ions (3 mol K⁺ and 1 mol PO4³⁻)<span>
d. 1.0 m CaCl2 (</span>dissociates and give 3 mol ions (1 mol Ca²⁺ and 2 mol Cl⁻))<span>
e. 1.0 m glucose (c6h12o6) (glucose does not dissociate, and solution have
1 mole of particles of the solute(glucose))
The largest number of particles has </span>1.0 m K3PO4 solution, and it is has lowest freezing point . Answer is C.
By binary codes or a whole image depending on the description of the image.
Intermolecular forces are forces of interaction that are operative between two different molecules. They are of follow types
1) Dipole- dipole interaction
2) Hydrogen bonds
3) vander Waal's forces
Depending upon the polarity and constitution molecule above forces are operable.
for instance, in case of ammonia, Hydrogen bonds exist because hydrogen atom is attached to electronegative element i.e. N
HCl and CO are polar molecules, so dipole-dipole interaction is operative in these molecules.
Finally in case of CO2, vander Waal's forces of interaction is operable because it is a non-polar molecule.