Well, when an atom attains a stable valence electron, it means that the outer electrons are complete and so cannot attain any more electrons. For the first shell, it is complete when it has 2 electrons, the second shell is complete when it has 8 electrons, all the other shells also have a particular number when complete. Anyway, i believe the answer is HYDROGEN because when HYDROGEN combines with another atom of HYDROGEN, the outer shell is completed. This is because HYDROGEN has only 1 electron. If the two HYDROGENS, which both have 1 electron combine, they make the electrons 2, which is complete for the first shell, HYDROGEN ends in the first shell. Since the electrons become 2, the shell is at stable valence. In all the other options, this happens;
NEON- It has 10 electrons, 2 in the first shell and 8 in the second. So the the shells are already complete, so it can't bond with any thing, which is completely against the question.
RADON- Radon has 86 electrons.
HELIUM- Helium has 2 electrons, so the shell is already full, and cannot bond, so it goes against the question. The question says BY BONDING.
So the answer is definitely 4) HYDROGEN
Hope i helped. Have a nice day, by the way, i'm very sure it's hydrogen.
Answer :
The correct answer for primary component of phosphate buffer at pH = 7.4 is H₂PO₄⁻ and HPO₄²⁻ .
<u>Buffer solution :</u>
It is a solution of mixture of weak acid and its conjugate base OR weak base and its conjugate acid . It resist any change in solution when small amount of strong acid or base is added .
<u>Capacity of a good buffer : </u>
A good buffer is identified when pH = pKa .
From Hasselbalch - Henderson equation which is as follows :
![pH = pka + log \frac{[A^-]}{[HA]}](https://tex.z-dn.net/?f=pH%20%3D%20pka%20%2B%20log%20%5Cfrac%7B%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
If [A⁻] = [HA] ,
pH = pka + log 1
pH = pKa
This determines that if concentration of weak acid and its conjugate base are changed in small quantity , the capacity of buffer to maintain a constant pH is greatest at pka . If the amount of [A⁻] or [HA] is changed in large amount , the log value deviates more than +/- 1M and hence pH .
Hence Buffer has best capacity at pH = pka .
<u>Phosphate Buffer : </u>
Phosphate may have three types of acid-base pairs at different pka ( shown in image ).
Since the question is asking the pH = 7.4
At pH = 7.4 , the best phosphate buffer will have pka near to 7.4 .
If image is checked the acid - base pair " H₂PO₄⁻ and HPO₄²⁻ has pka 7.2 which is near to pH = 7.4 .
Hence we can say , the primary chemical component of phosphate buffer at pH = 7.4 is H₂PO₄⁻ and HPO₄²⁻ .
The choices are true about the characteristic of a strong base, except for it having a concentration of above 1.0 M. Therefore, the answer is letter A. The concentration of the base is not a very important as to how strong really the base is.
Answer:
A. Is independent of other energy influences
Explanation:
Nuclear decay occurs at a constant rate. The rate of decay is independent of temperature.
B, C, and D are wrong. The decay rate cannot be sped up or slowed down at ordinary temperatures.