1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zhuklara [117]
3 years ago
15

A uniform solid disk rolls without slipping down an incline making an angle θ with the horizontal. What is its acceleration? (En

ter the magnitude. Use any variable or symbol stated above along with the following as necessary: g for the acceleration of gravity.)
Physics
1 answer:
Maru [420]3 years ago
6 0

Answer:

aCM = (2/3)*g*Sin θ

Explanation:

Consider a uniform solid disk having mass M,  radius R and rotational inertia I  about its center of mass, rolling without  slipping down an inclined plane.

In order to get the linear acceleration of the object’s center of mass, aCM ,

down the incline,  we analyze this as follows:

The force of gravity (W = Mg) acting straight down  is resolved into components parallel and  perpendicular to the incline.

Since the object rolls without  slipping there is a force of  friction (Ff) acting on the object,  at it’s point of contact with the  incline, in the direction up  the incline.

Newton’s 2nd Law gives then for acceleration down the incline

∑Fx' = m*aCM   ⇒    m*g*Sin θ - Ff = m*aCM

The force of friction also causes a torque around the center of mass

having lever arm R so we can also write

τ = R*Ff = I*α

Solving for the friction,    Ff = I*α / R

This is used in the expression  derived from the 2nd Law:

m*g*Sin θ - Ff = m*g*Sin θ - (I*α / R) = m*aCM

The objects angular acceleration is related to the linear acceleration  of the edge that contacts the incline by

a = R*α

Since the object rolls without  slipping this has the same  magnitude as aCM so we have  that

α = aCM / R

Using this in

m*g*Sin θ - (I*α / R) = m*g*Sin θ - (I*(aCM / R) / R) = m*aCM

⇒  aCM = (m*g*Sin θ*R²) / (I + m*R²)

if I = (1/2)*m*R²   (for a uniform solid disk)

we get

aCM = (2/3)*g*Sin θ

You might be interested in
(a) If a proton with a kinetic energy of 6.2 MeV is traveling in a particle accelerator in a circular orbit with a radius of 0.5
Tju [1.3M]

Answer:

The fraction of its energy that it radiates every second is 3.02\times10^{-11}.

Explanation:

Suppose Electromagnetic radiation is emitted by accelerating charges. The rate at which energy is emitted from an accelerating charge that has charge q and acceleration a is given by

\dfrac{dE}{dt}=\dfrac{q^2a^2}{6\pi\epsilon_{0}c^3}

Given that,

Kinetic energy = 6.2 MeV

Radius = 0.500 m

We need to calculate the acceleration

Using formula of acceleration

a=\dfrac{v^2}{r}

Put the value into the formula

a=\dfrac{\dfrac{1}{2}mv^2}{\dfrac{1}{2}mr}

Put the value into the formula

a=\dfrac{6.2\times10^{6}\times1.6\times10^{-19}}{\dfrac{1}{2}\times1.67\times10^{-27}\times0.51}

a=2.32\times10^{15}\ m/s^2

We need to calculate the rate at which it emits energy because of its acceleration is

\dfrac{dE}{dt}=\dfrac{q^2a^2}{6\pi\epsilon_{0}c^3}

Put the value into the formula

\dfrac{dE}{dt}=\dfrac{(1.6\times10^{-19})^2\times(2.3\times10^{15})^2}{6\pi\times8.85\times10^{-12}\times(3\times10^{8})^3}

\dfrac{dE}{dt}=3.00\times10^{-23}\ J/s

The energy in ev/s

\dfrac{dE}{dt}=\dfrac{3.00\times10^{-23}}{1.6\times10^{-19}}\ J/s

\dfrac{dE}{dt}=1.875\times10^{-4}\ ev/s

We need to calculate the fraction of its energy that it radiates every second

\dfrac{\dfrac{dE}{dt}}{E}=\dfrac{1.875\times10^{-4}}{6.2\times10^{6}}

\dfrac{\dfrac{dE}{dt}}{E}=3.02\times10^{-11}

Hence, The fraction of its energy that it radiates every second is 3.02\times10^{-11}.

5 0
3 years ago
Which best explains the relationship between parent rock and soil composition
Vaselesa [24]
Soil is the result of chemical or physical weathering of a parent rock .this is so since the soil is just tiny particle of the huge parent rock and hence it affects soil composition<span> .</span> if the parent rock was made of limestone then the soil composition will constitute calcite<span> and </span><span>aragonite mineral elements from the limestone parent rock.</span>
8 0
3 years ago
Steel wire rope is used to lift a heavy object. We use a 3.1m steel wire that
kaheart [24]

Answer:

Young's modulus for the rope material is 20.8 MPa.    

 

Explanation:

The Young's modulus is given by:

E = \frac{FL_{0}}{A\Delta L}

Where:

F: is the force applied on the wire

L₀: is the initial length of the wire = 3.1 m

A: is the cross-section area of the wire

ΔL: is the change in the length = 0.17 m

The cross-section area of the wire is given by the area of a circle:

A = \pi r^{2} = \pi (\frac{0.006 m}{2})^{2} = 2.83 \cdot 10^{-5} m^{2}

Now we need to find the force applied on the wire. Since the wire is lifting an object, the force is equal to the tension of the wire as follows:

F = T_{w} = W_{o}

Where:

T_{w}: is the tension of the wire

W_{o}: is the weigh of the object = mg

m: is the mass of the object = 1700 kg

g: is the acceleration due to gravity = 9.81 m/s²

F = mg = 1700 kg*9.81 m/s^{2} = 16677 N

Hence, the Young's modulus is:

E = \frac{16677 N*0.006 m}{2.83 \cdot 10^{-5} m^{2}*0.17 m} = 20.8 MPa          

Therefore, Young's modulus for the rope material is 20.8 MPa.                

I hope it helps you!                                    

7 0
3 years ago
Now assume that Alice and Bob are twins, and Alice left Earth and Bob stayed behind fixing his spaceship. If Alice spent some ti
alexgriva [62]
我們的確認為我可以幫你們解決問題,我們要不要買不起房屋貸款土地
8 0
3 years ago
Why is gravitational acceleration almost always a factor in determining pressure?
Scorpion4ik [409]

Explanation:

Newton's law of universal gravitation states that every object attracts every other object with a force. For any two objects, this force is directly proportional to the mass of each object. The greater the masses, the greater the force of attraction between them. Newton also deduced that this force decreases as the square of the distance between the centers of the objects increases. The farther away the objects are from each other, the less the force of attraction between them.

7 0
3 years ago
Other questions:
  • How much work is done by a 32 N force pushing a pencil 0.43 m? a 32 J b 14 J c 32 J d 74 J
    5·1 answer
  • A car is driving at 57 mi/hr, how long will it take for the car to go 80 mile
    6·1 answer
  • When a soda bottle is opened you hear a "whoosh" sound because you are decreasing the pressure of the carbon dioxide in the soda
    10·1 answer
  • A wave has a wavelength of 13 mm and a frequency of 18 hertz. What is its speed?
    15·1 answer
  • Where would you find the lowest density seawater?
    9·2 answers
  • A toroidal coil has a mean radius of 16 cm and a cross-sectional area of 0.25 cm2; it is wound uniformly with 1000 turns. A seco
    6·2 answers
  • A particular radiograph was produced using 6 mAs and 110 kVp with an 8:1 ratio grid. The radiograph is to be repeated using a 16
    10·1 answer
  • What is the equation for acceleration and what does each variable mean?
    10·1 answer
  • Plz, help the rubber ball be dropped from the top of a ladder. It bounces on the same spot on the ground several times to a less
    5·1 answer
  • If something is 50% efficient, how many joules of wasted energy will there be if 750J of energy is put in?
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!