Answer:
high density can withstand high acceleration and applied forces
Heavy metals are toxic to humans,
the clay is quite abundant and in general it is not toxic
Explanation:
The selection of materials for the construction of rockets takes into account many aspects, the technical resistance to the demands of space travel, but also the abundance of the material. Heavy metals have two very serious problems. The first one, some of them are a little scarce in nature, but the most serious problem is that almost all of them are toxic to humans, for example: lead and mercury.
On the other hand, the clay is quite abundant and in general it is not toxic to living beings.
If we use Newton's second law
F = m a
let's use the concept of density
rho = m / V
m = rho V
let's substitute
F = rho V a
From this expression we see that a material with high density can withstand high acceleration and applied forces, such as those existing in spacecraft clearance and re-entry to Earth.
Unfortunately with this law there is no criterion to select a material unless its density is high, in addition to this criterion low toxicity criteria for human beings are used,
Answer:
Explanation:
wave length of light λ = 502 nm
screen distance D = 1.2 m
width of one fringe = 10.2 mm / 20
= .51 mm
fringe width = λ D / a , a is separation of slits
Puting the values given
.51 x 10⁻³ = 502 x 10⁻⁹ x 1.2 / a
a = 502 x 10⁻⁹ x 1.2 / .51 x 10⁻³
= 1181.17 x 10⁻⁶ m
1.18 x 10⁻³ m
= 1.18 mm .
I believe the answer is b) slowly heating the surface
Answer:
#see solution for details
Explanation:
-Uncertainty refers to an estimate of the amount by which a result may differ from this value,
-Precision refers to how closely repeated measurements agree with each other.
-Accuracy refers to how closely a measured value agrees with the correct value.
-The number of significant figures is the number of digits believed to be correct by the person doing the measuring. Therefore, choosing the correct number of significant figures reduces the deviation from the point of accuracy/uncertainty or precision and thereby reducing margin of error in the ensuing calculations.
Answer:
False
Explanation:
Gravity force is constant.
There some places on Earth that gravity has a variation, but in general, it is the same everywhere.
If you analyze the equation for the weight, which is the action of the gravity to mass, you'll see that W=mg, where m is the mass and g, is gravity.
If you increase the mass, what you are increasing is weight and not gravity.